

IJPBS |Volume 3| Issue 3 |JUL-SEP|2013|27-32

HIGH SENSITIVE C-REACTIVE PROTEIN IN PRE-ECLAMPSIA

T.Sarala Devi¹, Penugonda Anveetha², Sujatha Pasula^{*3}

 ¹ M.B.B.S, M.D, Assistant professor, Department of Biochemistry, Madha Medical College and Research institute, Kovur, Chennai-600122
 ²Post graduate, Department of Biochemistry, Katuri Medical college, Guntur-522019

 ^{*3}Assistant professor, Department of Biochemistry,
 D D Institute of Medical Science and Research, Thiruvalluri.-631210

 *Corresponding Author Email: <u>drsujathapasula@gmail.com</u>

ABSTRACT

AIM: The aim of the study is to whether CRP levels are elevated in the first trimester of pregnancy. **MATERIALS** AND METHODS:50 First trimister patients of age below 30 years with gestational age between 10 to 14 weeks of pregnancy, $BP \ge 130/86$ mm of Hg and proteinuria 200mg /L & above were included in the study as cases. Healthy age and gender matched 50 pregnant women were taken as controls. **RESULTS:** Women with high risk pregnancies are 43.50 times significantly more likely to have elevated hsCRP when compared to Controls ,and also TGL and VLDL are significantly increased in cases with P<0.05. **CONCLUSIONS:** Thus hsCRP can be used as a predictive marker for pre-eclampsia.

KEY WORDS

hsCRP, Pre-eclampsia.,Llipid profile.

INTRODUCTION

Hypertensive disorders of Pregnancy (HDP) are a frequently encountered complication of pregnancy and has a number of possible etiologies. It may be caused by the pregnancy itself; it may be a long term problem present before the pregnancy began; or it may be a new medical problem, by chance coinciding with pregnancy.

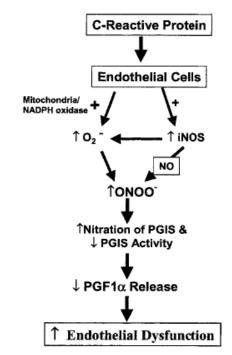
Hypertensive Disorders of Pregnancy (HDP) affects upto 6 - 8% of pregnancies and contribute significantly to still births and neonatal morbidity and mortality¹. Pre-eclampsia is a common, complication of pregnancy. Symptoms of pre-eclampsia include hypertension and proteinuria and pre-eclampsia are associated with general endothelial dysfunction². Expectant mothers with hypertension are predisposed to potentially lethal complications, abruption disseminated notably placenta, intravascular coagulation, cerebral hemorrhage,

hepatic failure, and acute renal failure. In these disorders the fetus is primarily affected through intrauterine growth retardation, preterm birth, low birth weight and perinatal deaths ¹.

The etiology of pre-eclampsia has been postulated to be part of an exaggerated maternal inflammatory response to pregnancy³. Increased production of reactive oxygen species ⁴ and increased release of inflammatory cytokines, such as Tumor necrosis factor α (TNF α) and Interleukin-6(IL-6)^{5 & 6}, by activated circulating leukocytes^{7 & 8} Also other possible reason is abnormal activation of the clotting system⁹ in women with pre-eclampsia.

C-reactive protein (CRP) is an acute phase protein which is increased in systemic inflammation. It was the first acute phase protein to be described and is an exquisitely sensitive systemic marker of inflammation and tissue damage ¹⁰C-reactive protein is a sensitive index of systemic inflammation that predicts adverse

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)


Sujatha Pasula* et al

atherosclerotic events, including myocardial infarction, stroke, peripheral vascular disease, and death¹¹. Elevated CRP level are correlated with obesity¹². It is to be known whether C-reactive protein and obesity are associated which predisposes to pre-eclampsia¹³. Systemic maternal inflammatory response to pregnancy is responsible for the

endothelial dysfunction which gives the clinical and pathological picture of pre-eclampsia¹⁴. The association between first trimester C-reactive protein levels and subsequent pre-eclampsia supports the hypothesis that systemic inflammation is involved in the pathogenesis of pre-eclampsia³.

IJPBS |Volume 3| Issue 3 |JUL-SEPT | 2013 | 27-32

Body Mass Index is a validated, independent risk factor for pre-eclampsia¹⁵ .It is suggested that BMI and C-reactive protein might share a common pathway linking obesity to pre-eclampsia. It has been seen that increase in BMI causes increase in the levels of C-reactive protein¹². Physiologically, pre-eclampsia is characterized by elevated circulating levels of $\text{TNF-}\alpha$ and IL-6, where IL-6 are the major source from adipose cells. Thus they are the principle determinants hepatic protein of C-reactive production. Therefore C-reactive protein might be an intermediary in the pathway between BMI and preeclampsia. Present study is done to investigate whether CRP. Levels are elevated during the first trimester (10-14 Weeks) in women who subsequently develop pre-eclampsia.

MATERIALS AND METHODS

It is a case control type of study was done on patients who attended the Out Patient Department of Obstetrics & Gynaecology for regular check up. Ethical committe approved protocol and also written consent was taken. Levels are elevated during the first trimester (10-14 Weeks) in women who subsequently develop pre-eclampsia

Inclusion Criteria:

Cases comprised of 100 Primi pregnant women, aged below 30 years, who were of 10 to 14 weeks of pregnancy. The blood pressures of these pregnant women were \geq 130Systolic pressure and \geq 86 Diastolic pressure and Proteinuria~200mg/l and above who attended the outpatient department .50 Age matched healthy primi pregnant women who are normotensive and without proteinuria were taken as controls.

Exclusion criteria

Pregnant women with family history of Hypertension, Diabetes mellitus, Ischaemic Heart. Disease and any renal, cardiovascular, neurological complication.

Specimen Collection:

Fasting venous blood samples were collected from cases and controls and the samples were centrifuged

Sujatha Pasula* et al

for the estimation of serum total cholesterol and serum triglycerides, HDL cholesterol and high sensitive C-reactive protein. Correspondingly urine sample of the patient was taken for urine sugar and urine protein. All routine investigations were done.

High sensitive C-reactive protein is based on the principle of agglutination reaction for the ultrasensitive determination of C – reactive protein in human serum by Turbidimetric Immunoassay. Serum triglyceride was estimated by GPO-PAP method,

IJPBS |Volume 3| Issue 3 |JUL-SEPT|2013|27-32

Serum total cholesterol ,Serum HDL – cholesterol was estimated by Enzymatic End point method using in the Randox Daytona auto analyzer.

The Statistical software namely SPSS 15.0 were used for the analysis of the data and Microsoft word and Excel have been used to generate graphs, tables etc.

Table 1: Comparison of BMI and Gestational age for Controls and Cases

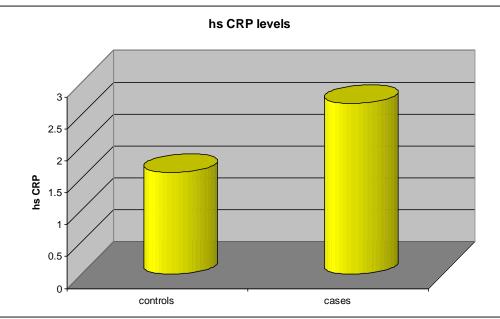

Basic characteristics Mean ± SD	Controls	Cases	P value
BMI in kg/m2	23.04±1.53	24.83±1.35	P<0.001**
Gestational Age in weeks	12.13±1.46	12.47±1.26	0.297

Table 2: hs CRP (mg/L) levels for Controls and Cases

hs-CRP	Controls	Cases
Range(mg/L)	1.21-2.25	2.25-7.0
Mean ± SD	1.60±0.31	2.68±1.43
95% CI	1.45-1.70	2.31-3.24

Hs CRP is significantly elevated in cases (student=4.43, P<0.001

Figure -1: Bar diagram showing hs CRP levels in cases and controls

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)

Sujatha Pasula* et al

IJPBS |Volume 3| Issue 3 |JUL-SEPT|2013|27-32

Table 3: hsCRP (mg/L) in high risk pre-eclampsia				
(95th percentile of controls is 2.0)				
hsCRP(mg/L)	Controls	Cases		
CRP <2.0	48(96.7%)	20 (40.0%)		
CRP >2.0	2 (3.3%)	30 (60.0%)		
Total	50	50		

χ2=23.776, P<0.001

Women with high risk pregnancies are 43.50 times significantly more likely to have elevated hsCRP when compared to Controls.

		I	hs-CRP in	cases an	d controls	6		
CASES								
	-							□ CRP>2.0 ■ CRP<2.0
CONTROLS								
	0	10	20 num	30 I ber of subj e	40 ects	50	60	

Figure: 2 Bar diagram representing hs CRP in subjects of cases and controls

Table 4: Lipid profile in cases and controls

Lipid profile Mean ± SD	Controls	Cases	P value
Total Cholesterol mg/dl HDL mg/dl	203.13±41.38 41.77±8.20	220.15±42.13 44.18±7.79	0.326 0.216
LDL mg/dl	119.53±31.27	130.98±39.51	0.187
TG mg/dl	183.23±41.36	211.98±46.47	0.015*
VLDL mg/dl	35.43±8.35	43.93±10.47	0.007**

TGL and VLDL are significantly increased in cases with P<0.05

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)

Sujatha Pasula* et al

www.ijpbs.com or www.ijpbsonline.com

DISCUSSION

Pre-eclampsia is a multifactorial and multisystem disorder of human pregnancy. Clinically characterized by hypertension, proteinuria, and edema. Pathophysiologically, the hallmark of pre-eclampsia include increased vasoconstriction resulting in maternal hypertension and reduced uteroplacental blood flow, disturbed vascular endothelial integrity with increased vascular permeability, and activation of the coagulation cascade¹⁶.

C-reactive protein (CRP) is a marker of tissue necrosis and inflammation. CRP are elevated in pre-eclampsia, but there is still a debate about its usefulness as marker for pre-eclampsia during the first and second trimester of pregnancy.

In present study there is increase in hs CRP levels in women with high risk pregnancies are 43.50 times significantly than that of controls correlates with study done by Myles Wolf et al, in Boston showed that high resolution CRP assays were performed on first trimester serum samples in women who developed pre-eclampsia¹³.

Mean Body Mass index among cases is significantly elevated in cases. Our findings are consistent with the studies by Chung Fang Qiu et al,who have reported that lean women BMI \leq 25 kg / m2 and elevated CRP were associated with a 2.5 fold increased risk of pre-eclampsia. But no similar association was observed in overweight women¹⁷.

Compared with women who had normal pregnancy, the first trimester C reactive protein levels were significantly higher among women in whom pre-eclampsia developed. The findings of Wolf M et al.¹³ is consistent with our study.

In the present study the mean Triglycerides and VLDL cholesterol levels are significantly increased in cases as compared to controls .The mean HDL cholesterol levels were within normal limits in cases. In line with the present study, the studies of Hirschfield et al., have reported high triglycerides and VLDL cholesterol in high risk pre-eclamptic pregnant women. Human CRP is a calcium dependent ligand binding protein with highest affinity to phosphocholine residues in plasma lipoproteins; this forms the basis for the observations.

C-reactive protein is a sensitive index of systemic inflammation that predicts adverse atherosclerotic events, including myocardial infarction, stroke, peripheral vascular disease and death¹¹.Elevated CRP levels are correlated with obesity, an association that might explain part of the excess cardiovascular risk linked to obesity¹².Systemic inflammation has been implicated in the pathogenesis of pre-eclampsia. Whether elevated C-reactive protein levels measured early in pregnancy, are associated with the subsequent development of pre-eclampsia is not clearly known. It is also not known whether C-reactive protein and obesity are similarly associated in pregnancy, and if so, whether inflammation might be one pathway through which obesity predisposes to pre-eclampsia 13

The etiology of pre-eclampsia is still to be determined. Among many hypotheses, a few hypotheses deserve a lot of attention. The Genetic hypothesis, the Placental ischemia hypothesis and Immune dysfunctionhypothesis¹⁸ are particularly noteworthy.

Thus, this present study indicates that High Sensitive C - reactive protein can be used as a predictive factor for pre-eclampsia.

References

- Roberts JM, Pearson G, Cutler J, Lindheimer M. Summary of the NHLBI Working Group on Research on Hypertension during Pregnancy. Hypertension.2003; 41:437-445
- Gifford RW, August PA, Cunningham G,Green LA, Lindheimer MD, McNellis D, Roberts JM, Sibai BM, Taler SJ. Report of the National High Blood pressure Education Program working group of High Blood pressure in Pregnancy. Am J Obstet Gynecol.2000; 183: S1-S22.
- Redman et al., Pre-eclampsia: An excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999; 180:499-506
- 4. Walsh SW, Maternal-placental interactions of oxidative stress and antioxidants in pre-eclampsia. Semin Reprod Endocrinol.1998; 16: 93-104.
- 5. Williams MA et al., Maternal second trimester serum tumor necrosis factor- alpha-soluble receptor p55

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)

Sujatha Pasula* et al

(sTNFp55) and subsequent risk of pre-eclampsia. Am J Epidemio.1999; 1149:323-329.

- Sacks GP et al., Normal pregnancy and pre-eclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis .Am J Obstet Gynecol.1998; 79:80-86.
- Haeger M et al., Complement, Neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 1992; 79:19-26.
- P. Von Dadelszen et al., Maternal peripheral blood leukocytes in normal and pre-eclamptic pregnancies. Br J Obstet Gynecol. 1999; 106: 576-581.
- 9. Perry KG and Martin JN, Abnormal homeostasis and coagulopathy in pre-eclampsia and eclampsia. Clin Ostet Gynecol. 1992; 35:338-350.
- 10. Pepys. MB, Baltz ML, Acute phase proteins with special reference to C-reactive protein and serum amyloid A protein. Adv immunol 1983; 34: 141-212.
- Ridker PM, Hennekens CH , Buring JE , Rifai N . Creative protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836-43.

IJPBS |Volume 3| Issue 3 |JUL-SEPT|2013|27-32

- Visser M, Bouter LM, Mc Quillan GM, Wener MH, Harris TB. Elevated C- reative protein levels in overweight and obese adults. JAMA 1999; 282: 2131-5.
- 13. Wolf et al., Obesity and pre-eclampsia: the potential role of inflammation. ObstetGynecol. 2001; 98:757-762
- 14. Roberts J.M. pregnancy related hypertension. In: Creasy R K, Resnik Reds.Maternal Fetal Medicine, 4 th ed. Philadelphia, pa: W B Saunders; 1998: 833–876.
- Sibai BM, Ewel M, Levine RJ, Klebanoff MA, Esterlitz J, Catalono PM, et al.Risk factors associated with preeclampsia in healthy nulliparous women. The calcium for pre-eclampsia prevention (CPEP) study group. Am J Obstet Gynaecol 1997; 177:1003-10
- 16. Yuping Wang,J Steven Alexander. Placental patho physiologyinpre- eclampsia. Pathophysiology 2000; 6:261-270
- Chunfang Qiu et al., A Prospective study of maternal serum C-reactive protein concentrations and risk of pre eclampsia. American Journal of Hypertension.2004; 17(2):154-160.
- Raijmakers MTM, Zusterzeel PLM, Roes EM, Steegers EAP, Mulder TPJ and Peters WHM. Oxidised and Free Whole Blood Thiols in Pre-eclampsia. Obstet Gynecol 2001; 97(2): 272-276.

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)