Research Article | Pharmaceutical Sciences | Open Access | MCI Approved

Online ISSN: 2230-7605, Print ISSN: 2321-3272

UGC Approved Journal

Analysis of Contents and Contaminants in Milk and Milk Products

O. Suhru Latha, R. Jasmin Sajini*, K. Chitra and Dipti. S Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, chennai-600116

> Received: 10 Mar 2019 / Accepted: 9 Apr 2019 / Published online: 1 Jul 2019 *Corresponding Author Email: karthikjasmin0214@gmail.com

Abstract

Milk is the secreted fluid of the mammary glands of female mammals. Since the initial times, mankind has used the milk of goats, sheep, and cows as food. Milk play an important part in human life as its calcium, protein and fat content and this is necessarily needed food for infant and children. milk is usually viewed as nutritious food with lots of vitamins, minerals, and fats, proteins etc with all these nutrients. sometime milk and its products contaminated by various substance via manure, drugs used in infectious state of cow, and insecticide. The aim of present study is to evaluate contents of milk products like milk, Cheese, Curd, Butter, Ghee and also to Analyse the presence of contaminants substance by qualitative and quantitative determination.

Keywords

Milk, Fats, Contents, Contaminants

1.INTRODUCTION:

Milk is composed of lactose and proteins, fats and minerals. In total composition around 31 % of fat present in milk which provide more energy. These fat content make milk in soft texture and creamy taste. The variety of milk products are consumed by humans like cream, butter, yogurt, ice cream, and cheese. Milk and milk products are rich in nutrients, contain high moisture and have neutral pH. Based on the above characteristics, milk easily help for growth and multiplication of many bacteria. Even pasteurized or refrigerated milk have tendency to contaminated with many bacteria. The various sources of these contamination from air, milking equipment, feeds, soils, faeces and housing will cause diseases like tuberculosis, brucellosis, lysteriosis, and different kinds of gastrointestinal disorders. moulds such as Aspergillus flavus and Aspergillus parasiticus have a capability to produce toxic substance aflatoxins which was introduced

through cattle feed. Aflatoxinsis a group of highly toxic secondary metabolic products Produced from these types of Fungai. Pesticide have a capability to produce health risk in human.

2.COMPOSITION OF MILK:

V. GANTNER et al, 2015 estimated milk and fat composition from different species and also discussed similarities and comparison to women milk with some milk species .As we know majority of milk contain carbohydrate (lactose), fat, protein, mineral its composition is varies based on different factors such as type of species, animals feed and the stage of lactation. In the same species also, it depends on genetics composition will varies.

3.POSSIBLE CONTAMINATION IN MILK:

Contamination of milk occurs from various sources which are:

A. Contamination due to External Factors:

a) On the Farm:

- After the milking process, the milk is contaminated by various environmental bacteria due to improper storage.
- Various environmental sources include soil, water or the manure used.
- Undesirable bacteria from these sources include lactic streptococci, coli form bacteria, micrococci, enterococci, which are found in the soil manure.

b) In Transit at the Manufacturing level:

- Various tanker trucks, transfer pipes, sampling utensils and vessel at the milk mart contaminate the milk.
- Unclean hands and arm of employees also is the major source of information as pathogen may be present.

B. Contamination from cow:

a) From the udder Interior:

- Many bacterial species are present in the udder of the cow, which may enter into the milking tracts of the cow.
- As it enters the teats, it contaminants the milk of the cow.
- In spite of aseptic milking 100 to 10,000/ml counts have been reported.

b) From the Exterior udder:

• The udder gets in contact with the soil, and the bacteria from soil contaminate the milk.

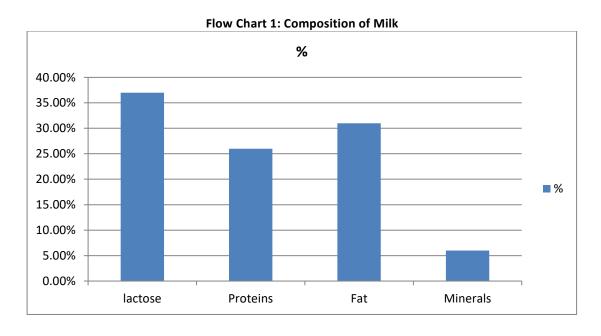
c)Coat of the milk:

- The coat of the cow being directly exposed to the environment can contaminate the milk.
- Bacillus species contribute to the ropiness of the milk.

• II. Quantitative analysis:

• Estimation of casein in different branded milk and given sample Id as A, B, C, D, E

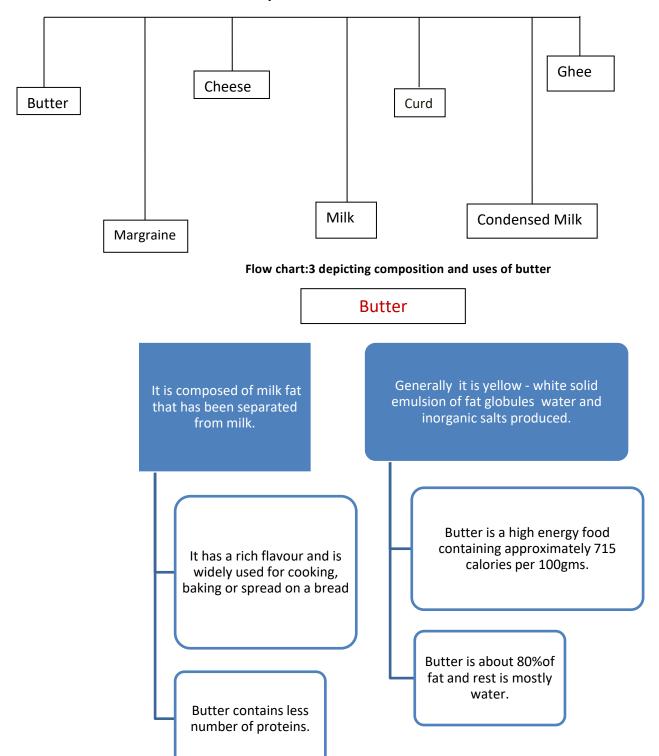
• Procedure:


 100ml of milk was taken then it was treated with Dil. Acetic acid. The precipitation of protein was observed, this precipitate protein was filtered, and it was dried in the oven for 24hrs to remove any adhering moisture. Then the amount of casein was weighed, and its percentage was calculated.

• II. Quantitative analysis:

 Estimation of casein in different branded milk and given sample Id as A, B, C, D, E

• Procedure:


 100ml of milk was taken then it was treated with Dil. Acetic acid. The precipitation of protein was observed, this precipitate protein was filtered, and it was dried in the oven for 24hrs to remove any adhering moisture. Then the amount of casein was weighed, and its percentage was calculated.

Flow chart :2 Classification of various milk products:

Various milk products available in market

Flowchart:4 depicting usage of cheese

Cheese

01

- More than 2000 varities of cheese are available in the world .
- •It is rich in protein, fat, vitamins and essential amino acids.

02

- •ingredients such as milk, starter, and coagulants used in the cheese processing .
- •And it involving many chemical, biochemical, and microbiological process.

03

• And it is nutritionally important to the body it also helps in building blocks for strong muscles.

Flow chart-5 depicting formation and uses of curd

Curd

Curds areformed bycurdling. It is process in which a dairy products obtained from coagulating the milk

This can be prepared by adding any edible acidic substance such as lemon juice or vinegar.

Milk has been left to sour will also naturally produce curd.

Generally curd is a semisolid sourish food prepared from fermented food Curd can be eaten plain or with addition of salt/pepper/ friuts/ sugar. It has been designated as functional food, it improves stamina and immunity.

Flow chart-6 Depicting formation and uses of ghee

Ghee Ghee is a common Ghee is relatively high It also contains 12.7 grams ingredient in traditional in calories, containing of fat, and minimal amount Indian cooking. 112 calories per 1of protein, carbohydrates. table spoon. Ghee also contain 108 micrograms of vitamin Ghee contains And it also helped to significantly less water or increase carcinogen moisture, than butter detoxification. does. The ghee will stay Although it is technically a fresher for longer than dairy product just like use ghee to saute vegetables, butter, it is well suited milk,cream ice cream cook meat, chicken, or fish or for travelling to fry rice.

4.CONTENTS AND CONTAMINANTS POSSIBLE IN MILK:

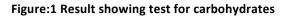
Table no: 1 Shows the contents and contaminants of milk

S.NO	contents		Contaminants
	Constituents	Percentage	
1.	<u>Proteins</u>	3.2	 Cane sugar Starch Cellulose Urea Ammonium compound Sulphate Glucose Sodium chloride Nitrates
2.	Casein Whey proteins <u>Carbohydrates</u>	82% 18% 4.9%	
۷.	<u>Carbonydrates</u> Lactose	4.9%	
3.	Water	87%	
4.	Vitamins and minerals	6%	

5.. ANALYSIS OF CONTENT MILK:

Table No: 2 Shows the analysis of content of milk

I. Qualitative analysis	II. Quantitative analysis		
A. carbohydrate	 Estimation of Casein by coagulation method 		
 Molisch test 	 Total carbohydrate content (lactose) 		
 Fehling's test 			
 Barfoed's test 			
 Iodine test 			
 Benedict's test 			
 Hydrolysis test for milk 			
B. Protein			
 Biuret test 			


I. Qualitative tests for Carbohydrates:


A. Table no :3 Shows Qualitative tests for Carbohydrates

C No	Tost	A. Table no :3 Shows Qualitative tests Procedure	•	Drodust used	Informes
S.No	Test		Observation	Product used	Inference
1.	Molisch	1ml sample + Alpha napthol +	Violet ring is	Milk	+ve
		Conc. sulphuric acid along the	obtained at the	Butter	+ve
		sides of the test tube.	junction of the two	Cheese	+ve
			layers	Ghee	-ve
				Curd	+ve
2.	Fehlings test	1ml sample+3mlFehlings A	Reddish brown	Milk	+ve
		solution+2ml Fehling's B solution	precipitate is	Butter	+ve
		and heat for 2-3 min.	observed	Cheese	+ve
				Ghee	-ve
				Curd	+ve
3.	Barfoed's test	2ml sample +Barfoed's reagent +	No characteristic	Milk	-ve
		heat for 2-3 mins	change observed	Butter	-ve
				Cheese	-ve
				Ghee	-ve
				Curd	-ve
4.	Iodine test	1ml of sample+ lodine+ potassium	Absence of blue	Milk	-ve
	(Detecting the	iodide	colour.	Butter	-ve
	presence of			Cheese	-ve
	starch)			Ghee	-ve
				Curd	-ve
5.	Benedict's test:	1ml sample+ Benedict's reagent+	Appearance of brick	Milk	+ve
		heat for 2-3 min	red colour	Butter	+ve
				Cheese	+ve
				Ghee	-ve
				Curd	+ve
6.	Hydrolysis test	2-3ml of sample + subject to acid	Reddish brown	Milk	+ve
-	for milk	hydrolysis. Perform barfoed's test	precipitate is	Butter	+ve
		, ,	obtained.	Cheese	+ve
				Ghee	-ve
				Curd	+ve

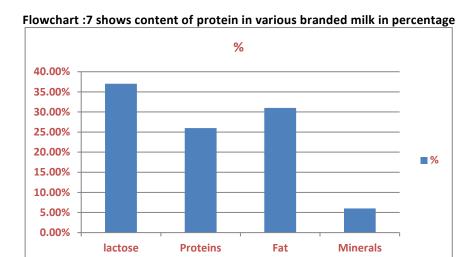
^[+] indicates presence of carbohydrates, [-] indicates absence of carbohydrates

B. Test for Proteins:

Table no - 4 Shows test for protein

S.No	Test	Procedure	Observation	Product used	Inference
1.	Biuret	1ml of sample+ potassium sodium tartarate	Purple pink	Milk	+ve
	test	treated with copper sulphate and sodium	complex is	Butter	+ve
		hydroxide.	observed.	Cheese	+ve
				Ghee	-ve
				Curd	-ve

Figure: 2 Result showing TEST for Protein



A, B, C indicates-milk

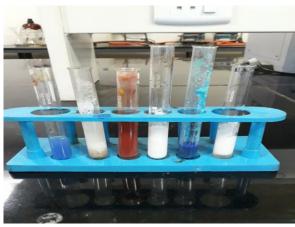
Table no - 5 Shows content of protein in different branded milk

•				
Brand	Amount/100m	%		
Α	2.62	26.2		
В	2.42	24.2		
С	2.56	25.6		
D	-	-		
E	2.67	26.7		

6. Analysis of contaminants in milk and milk products

Table no - 6 shows possible contaminants in milk and milk products

S.No	Test	Procedure	Observation	Product used	Inference
1.	Test for	1ml of sample + 1ml of resorcinol solution and heat it for	Absence of	Milk	-ve
	Cane sugar	5 mins.	red colour	Butter	-ve
				Cheese	-ve
				Ghee	-ve
				Curd	-ve
2.	Test for	5ml of sample in a test tube and it was heated for 5mins.	Absence of	Milk	-ve
	starch	Then add 1-2 drops of Iodine solution	blue colour	Butter	-ve
				Cheese	-ve
				Ghee	-ve
				Curd	-ve
3.	Test for	1ml of sample + 1ml Para- Dimethyl Amino Benzaldehyde	Absence of	Milk	-ve
	starch	(DMAB)	blue colour	Butter	-ve
				Cheese	-ve
				Ghee	-ve
				Curd	-ve
4.	Test for	1ml of sample + 2% sodium hydroxide + 2% sodium	Violet colour	Milk	-ve
	Urea.	hypochlorite + 5% phenol solution	was not	Butter	-ve
			obtained	Cheese	-ve
				Ghee	-ve
				Curd	-ve
5.	Test for	1ml of sample + 2% sodium hydroxide + 2% sodium	Absence of	Milk	-ve
	Ammonium	hypochlorite + 5% phenol solution. And heat it for 10mins	blue	Butter	-ve
		in boiling water bath.	colouration	Cheese	-ve
				Ghee	-ve
				Curd	-ve
6.	Test for	10ml of sample in a 50ml stoppered test tube. Add 10ml	White	Milk	+ve
	Sulphates.	of Trichloro acetic acid and filter through what man filter	precipitate is	Butter	-ve
		paper. Take 5ml of clear filtrate add few drops of barium	observed.	Cheese	-ve
		chloride solution		Ghee	-ve
				Curd	-ve
7.	Test for	1ml of sample in a test tube + 1ml of Barford's reagent.	No reddish-	Milk	-ve
	Glucose.	and heat it for 3mins in a boiling water bath. And cool	brown	Butter	-ve
		under tap water + add 1ml of Phospho molybdic acid	precipitate is	Cheese	-ve
		reagent.	obtained.	Ghee	-ve



				Curd	-ve
8.	Test for	1ml of the sample + 0.1N Silver Nitrate solution. mix the	Presence of	Milk	-ve
	Sodium	contents and add 0.5ml of 10% potassium chromate	chocolate	Butter	-ve
	Chloride.	solution.	brown colour	Cheese	-ve
				Ghee	-ve
				Curd	-ve
9.	Test for	2ml of the sample + Add 2-3 drops Di-phenyl Amine along	Absence of	Milk	-ve
	Nitrates.	the sides of the test tubes	Nitrates.	Butter	-ve
				Cheese	-ve
				Ghee	-ve
				Curd	-ve

Figure:3 Result showing test for contaminants in milk and milk products:

CONCLUSION

In the present study the major contents of milk of protein and carbohydrate has been analysed by qualitative and quantitative method. Also, Various possible contaminants in milk and its products are Cane sugar, Starch, Cellulose, Urea, Ammonium compound, Sulphate, Glucose, Sodium chloride, Nitrates. This study proves that only milk contains traces of sulphate which was proved by qualitative analysis. This paper give knowledge to analyse milk and milk products by various test in laboratory level.

ACKNOWLEDGEMENT:

The authors thank Principal, Head of department of Pharmaceutical Chemistry, Management of Sri Ramachandra Institute of Higher Education and Research, Chennai to provide opportunity to carry out and complete this project successfully.

REFERENCE:

- 1. Food Chemistry; Milk and Dairy Product: 505-550
- Vandana Awasthi, Sanjivan Bahman, Lalit K.Thakur, Santosh Kumar Singh , Ajit Dua, Sanjeev Ganguly, Contaminants In Milk And Impact Of Heating:An

Int J Pharm Biol Sci.

- Assessment Study Indian Journal of Public Health, 2012; 56(1), 95-99.
- 3. Fransisco vosioli, A narrative review of recent Evidence, Advances in nutrition An International Journal, 2014;2:131-143.
- 4. Vesna Gantner, Pero Mijic, Mirjana Baban, Zoran skrtic, Alka Turalija, Mljekarstvo, The overall and fat composition of milk of various species, 2015;65 (4): 223-231.
- Albert C. Hale, Analysis Of Milk And Milk Products, J. Am. Chem. Soc., 1893, 15 (10): 596–598
- E. Waller, Experiments On Milk Analysis, J. Am. Chem. Soc, 1891, 13 (1): 52–61
- Bader A. Alfarraj, Herve K. Sanghapi, Chet R. Bhatt, Qualitative Analysis of Dairy and Powder Milk Using Laser-Induced Breakdown Spectroscopy (LIBS), Manual of Methods of Analysis of Foods, 2012.
- Rashida Kanwal, Toqeer Ahmed and Bushra Mirza, Comparative Analysis of Quality of Milk Collected

- from Buffalo, Cow, Goat and Sheep of Rawalpindi/Islamabad Region in Pakistan, Asian Journal of Plant Sciences, 2004; 3 (3): 300-305.
- Astha Parajuli, Prasiddhi Rimal, Rujisha Maharjan, Richa Chaudhary, Shashi Bhushan, Chaturwedi, Quality Analysis of Milk in Kathmandu Valley, 2018; Tribhuvan University Journal of Microbiology. 5, 1:7-10
- Muhammad Naseer Abbas, Baharullah Khattak1, Abdul Sajid, Taiseer U Islam Qaiser Jamal, Shahzad Munir, Biochemical and Bacteriological Analysis of Cows' Milk Samples Collected from District Peshawar, Int. J. Pharm. Sci. Rev. Res, 2013;21(2), 221-226.
- 11. Jette Jakobsen, Erling Saxholt, Vitamin D metabolites in bovine milk and butter Journal of Food Composition and Analysis 2009;22, 472–478