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Abstract 
Hydrocarbons are highly toxic pollutants that are difficult to degrade and can persist in the 
environment for many years, posing significant threats to the ecological system. Remediating 
hydrocarbons in contaminated soils has become a challenging task. Currently, bioremediation 
has gained significant importance compared to other methods, as it is eco-friendly, cost-
effective, and can efficiently degrade hydrocarbons in polluted soils. This  process relies on 
microorganisms capable of transforming or mineralizing hydrocarbons. Bacterial degradation 
processes have proven effective in breaking down various cyclic aromatic and aliphatic 
hydrocarbons due to the presence of diverse enzymes, which enable bacteria to utilize different 
hydrocarbons as sole sources of carbon and energy. However, there remains a gap in knowledge 
regarding microbial capabilities in degrading different hydrocarbons. This review provides 
comprehensive information on the classification and associated risks of hydrocarbons, focusing 
on bioremediation methods, mechanisms involved in treating oil-contaminated soils, and 
factors affecting bioremediation. Additionally, it highlights key findings on bacterial abilities to 
degrade various types of hydrocarbons, with particular emphasis on aliphatic and aromatic 
hydrocarbons, due to their abundance in crude oil and its derivatives. 
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1. INTRODUTION 
Oil is a primary energy source used extensively in 
industries, transportation, and other sectors. Although oil 
plays a significant role, its overuse causes serious issues 
that can impact our health and the environment due to its 
mutagenic, toxic, and carcinogenic properties [1]. Both 
natural and anthropogenic sources contribute to oil 
pollution. Various anthropogenic sources, including oil 
extraction, transportation, distribution, and chemical 
processing [2], leakage from underground storage tanks, 
and other petrochemical activities, as well as oil release 
from refinery sites, extraction, and treatment fields, 
contribute to pollution [3]. Long-term oil pollution causes 
pollutants like polycyclic aromatic hydrocarbons (PAHs) to 

accumulate, which can damage soil ecological structure 
and inhibit plant growth due to their teratogenic, 
mutagenic, and carcinogenic properties [4]. The soil's 
physicochemical properties, such as moisture content, 
porosity, C/N ratio, C/P ratio, and environmental pH, are 
also altered when contaminated with petroleum 
hydrocarbons PHS [5]. 
 
To address these issues, various methods such as physical, 
chemical, and biological are employed. The choice of 
method depends on pollutant characteristics, including 
physicochemical properties, type, pollution source, and 
whether the pollution was recent or longstanding [6]. 
Polluted sites are treated only after analysing pollutant 
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type, environmental and human health risks, treatment 
feasibility, and anticipated effectiveness. Remediation 
methods can be classified into ex situ and in situ techniques 
[7]. In situ conventional remediation technologies cannot 
efficiently volatilize petroleum heavy fractions, and rely on 
vitrification, which is highly expensive [8], and often 
require chemicals. Incomplete degradation of petroleum 
compounds may lead to the formation of even more toxic 
byproducts. The conventional methods can alter soil 
structure, subsurface properties, and microbial 
colonization [9]. Compared to other methods, 
bioremediation stands out as an eco-friendly and efficient 
approach for degrading hydrocarbons [10]. Additionally, it 
can transform highly toxic hydrocarbons into less harmful 
compounds through enzymatic and metabolic reactions 
[11]. Microorganisms are widely distributed in the 
environment due to their ability to thrive in diverse 
habitats, their intense metabolism, and their versatile 
nutrition. Certain microorganisms capable of converting, 
utilizing, or modifying toxic compounds are used in 
pollutant degradation; this process is termed 
biodegradation or bioremediation. 
 
Bioremediation is carried out by bacteria, yeast, and fungi. 
Among these, bacteria play a major role in degrading 
hydrocarbons [12]. These organisms are also called 
bioremediators and are used in the cleanup of 
contaminated sites [13]. The isolation and inoculation of 
bioremediators enhance the degradation of petroleum 
hydrocarbons at contaminated sites [14]. Natural 
attenuation is a type of bioremediation process in which 
biodegradation efficiency depends on the ability of 
indigenous microorganisms to degrade pollutants at the 
contaminated site  [15], [9]. 
 
Two methods of biodegradation are used: 
bioaugmentation and biostimulation [16]. 
Bioaugmentation involves the addition of highly 
competent oil-degrading bacteria to enhance degradation. 
Biostimulation, on the other hand, modifies environmental 
conditions to stimulate bacterial activity. In this process, 
indigenous microorganisms are activated by adding 
nutrients, including large amounts of carbon sources (i.e., 
contaminants), which can result in the rapid depletion of 
essential inorganic nutrients, such as phosphorus (P) and 
nitrogen (N) [17]. Many studies report positive effects of 
biostimulation in oil decontamination, especially in cold 
ecosystems, mainly using N-P-K oleophilic or N-P-K 
fertilizers [8]; [18].  
 
Bioremediation of hydrocarbon-contaminated soils is 
versatile and can be applied both in situ (on-site) and 
offsite [19]. The importance of oil bioremediation spans 
various ecosystems, including marine, cold terrestrial 
ecosystems, alpine, arctic and Antarctic soils, and sea ice 

[20]. Alaskan groundwater is also considered in such 
efforts. The nature and extent of hydrocarbon metabolism 
are significantly influenced by field temperatures, which 
affect the physical and chemical characteristics of 
hydrocarbons as well as the rate of biodegradation [21]. 
For low-risk, oil-contaminated sites, intrinsic 
bioremediation is widely accepted as a cost-effective 
alternative. While biodegradation is the primary 
mechanism for contaminant breakdown, other processes-
such as chemical and physical processes like dilution, 
dispersion, abiotic transformation, volatilization, and 
absorption—also play important roles  [6]. 
 
The aim of this review is to provide an overview of 
hydrocarbon pollution, the diversity of hydrocarbons, the 
variety of hydrocarbon clastic bacteria, and their 
degradation potential, as well as an update on the different 
bioremediation strategies adopted for treating polluted 
environments. The mechanisms by which hydrocarbon 
clastic bacteria degrade hydrocarbons will also be 
discussed. 
 
2. HYDROCARBON POLLUTION IN CONTAMINATED SITES  
Soil pollution is defined as the accumulation in soils of 
persistent toxic compounds, chemicals, salts, radioactive 
materials, or disease-causing agents, all of which adversely 
affect plant growth and animal health. Soil pollution can 
occur through several pathways, including (1) seepage 
from landfills, (2) discharge of industrial waste into the soil, 
(3) percolation of contaminated water into the soil, (4) 
rupture of underground storage tanks, (5) excessive 
application of pesticides, herbicides, or fertilizers, (6) solid 
waste seepage, and (7) improper installation, detonation, 
or dismantling of munitions.  
 
Petroleum and its combustion by-products are the primary 
hydrocarbon sources contributing to soil pollution. Based 
on their origin, hydrocarbon sources are categorized as 
phytogenic, petrogenic, or pyrogenic. Phytogenic 
hydrocarbons naturally enter the ecosystem through 
processes like evaporation, dispersion, adsorption, and 
dissolution of petroleum and petroleum combustion 
products. Petrogenic sources, such as fuels from leaking 
tanks and lubricants, can significantly pollute groundwater 
systems [22]. Pyrogenic hydrocarbons, released during fuel 
combustion at high temperatures and in low-oxygen 
conditions, are another major source, with incomplete 
combustion and fat pyrolysis near power plants adding 
further hydrocarbon pollutants. Globally, over 50% of 
crude oil is supplied by the Arabian Gulf region (both 
onshore and offshore oil reservoirs), making oil spills 
frequent in this area. Oil production wells located near 
coastlines pose an additional threat to marine and water 
systems. 
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3. DIFFERENT CLASSES OF HYDROCARBONS  
Hydrocarbons are organic compounds composed 
exclusively of hydrogen and carbon atoms. They are the 
primary components of fossil fuels, natural gas, and 
petroleum. Crude oil contains tens of thousands of 
hydrocarbons, ranging from simple C1 (methane) 
molecules to more complex structures exceeding C30. 
According to Saturate Aromatic Resin and Asphaltene 
(SARA) analysis, alkanes (including open-chain, linear, 
branched, and cycloalkanes) are a major part of aliphatic 
hydrocarbons. Aromatic hydrocarbons, present in high 
quantities, contribute monomers to resin formation. The 
composition of crude oil depends on both hydrocarbons 
and non-hydrocarbons, as well as their origins. Persistent 
organic pollutants (POPs), including polycyclic aromatic 
hydrocarbons (PAHs), are lipophilic and resistant to 
degradation, leading to their accumulation in aquatic 
systems. 
 
3.1. Aliphatic Hydrocarbons 
Aliphatic hydrocarbons consist solely of hydrogen and 
carbon atoms and may be linear, branched, cyclic, 
saturated, or unsaturated. This group includes alkanes, 
alkenes, and alkynes. Among these, alkanes are the most 
abundant in crude oil and are typically the first compounds 
to degrade. 
 
3.2. Aromatic Hydrocarbons 
Aromatic hydrocarbons are closed-chain hydrocarbons 
containing a benzene ring or exhibiting the basic 
characteristics of aromatic compounds. They can be 
divided into monocyclic aromatic hydrocarbons, polycyclic 
aromatic hydrocarbons, and non-benzene aromatic 
hydrocarbons. 
 
3.2.1. Monocyclic Aromatic Hydrocarbons: These 
compounds contain only one benzene ring and include 
substances like toluene, xylene, ethylbenzene, styrene, 
benzene, and acetylene. Naphthalene, anthracene, and 
phenanthrene are also significant pollutants often found at 
oil-contaminated sites. Due to their complex structure, 
these compounds are highly persistent and challenging to 
degrade. 
 
3.2.2. Polycyclic Aromatic Hydrocarbons (PAHs): Polycyclic 
aromatic hydrocarbons (PAHs) are a significant class of 
chemicals consisting of 2 to 7 fused aromatic rings. 
Approximately 10,000 PAH compounds have been 
identified as pollutants in the atmosphere, water, and soil. 
Based on the fusion of benzene rings, PAHs can be 
classified into three categories: 
1. Polybenzo-aliphatic hydrocarbons - Examples include 

diphenyl methane, stilbene, styrene, and 
triphenylmethane. 

2. Biphenyl and polybenzene hydrocarbons - Examples 
include biphenyl, terphenyl, and tetraphenyl.  

3. Polycyclic aromatic hydrocarbons - Examples include 
phenanthrene, indene, naphthalene, anthracene, 
fluorene, acenaphthene, pyrene, and coronene.  

PAHs are highly resistant to degradation and can persist in 
the environment for extended periods. They are 
considered mutagenic, carcinogenic, and toxic, posing 
significant environmental and health risks [23]. PAHs in soil 
contribute to increased levels of environmental 
contamination [24]. Major sources of PAHs include road 
surfaces, domestic waste oil spills, leaks from aging storage 
tanks, tanker spillages, incomplete fossil fuel combustion, 
and seepage from natural oil reservoirs.  
 
3.3. Heterocyclic Compounds 
Heterocyclic compounds are organic molecules containing 
at least one heterocyclic ring, where nitrogen, oxygen, or 
sulphur atoms replace carbon atoms within the ring 
structure. Examples include quinolines (containing 
nitrogen), dibenzothiophenes (containing sulphur), and 
xanthenes (containing oxygen). These compounds are 
particularly challenging to degrade.  
 
4. RISK HAZARDS OF HYDROCARBON POLLUTION  
 
4.1. Impact on Human Health 
Epidemiological and toxicological research indicates that 
the constituents of crude oil and oil slicks pose numerous 
health risks to humans. The release of hydrocarbons into 
the environment causes various health hazards, including 
encephalopathy, acidosis, arrhythmias, and dermatitis, 
commonly reported due to acute hydrocarbon exposure 
[25]. Another significant consequence of hydrocarbon 
aspiration is pneumonitis. Hydrocarbons, due to their low 
viscosity and surface tension, can penetrate deeply into the 
lungs, resulting in severe necrotizing pneumonia. Ingestion 
of hydrocarbons can irritate the gastrointestinal tract, 
leading to symptoms such as abdominal pain, nausea, 
vomiting, and hematemesis.  
 
Toluene, a common component in hydrocarbons, can cause 
renal tubular acidosis, glomerulonephritis, hypokalaemia, 
and hyperchloremia. The central nervous system may also 
be affected, with effects that may be either short-term or 
long-term. Symptoms include headache, ataxia, nausea, 
hallucination, dizziness, disorientation, slurred speech, and 
depression. Several studies have shown that hydrocarbons 
impact neurotransmitter pathways and receptors, such as 
serotonin, glutamate, nicotinic acid receptors, GABA, and 
dopamine pathways, as well as voltage-gated channels in 
the brain. Prolonged exposure can lead to brain atrophy 
and cardiovascular effects.  
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The U.S. Environmental Protection Agency and the 
European Union have identified seven polycyclic aromatic 
hydrocarbons (PAHs) as carcinogenic and sixteen PAHs as 
major pollutants [26]. According to the American 
Association of Poison Control Centres’ Toxic Exposure 
Surveillance System, there were 318,939 exposures due to 
substances like lamp oil, benzene, toluene, halogenated 
hydrocarbons, and kerosene [27]. 
 
4.2. Effect of Hydrocarbon Toxicity on Microorganisms  
Microbial metabolism is influenced by organic 
components, nutrients, temperature, and the soil 
ecosystem. Hydrocarbons alter the soil's physico-chemical 
properties, such as moisture content, C/N ratio, porosity, 
and pH. Dong et al.  [5] reported changes in bacterial 
populations following pH contamination in samples from 
the permafrost region of the Qinghai-Tibet Plateau. Oil 
pollution affects microbial distribution both vertically and 
horizontally, leading to a homogeneous microbial 
population and the emergence of rare populations at the 
site [28]. Several hydrocarbons, particularly cyclic ones, are 
toxic to microbes due to their high partition coefficient 
values (log P) with water and octanol. Lipophilic 
compounds accumulate in cell membrane bilayers, 
resulting in hydrocarbon buildup that compromises 
membrane integrity and disrupts proton and ion 
permeability [29], which, in turn, disturbs intracellular pH 
homeostasis. To counteract this, microbial cells employ 
tolerance mechanisms, such as modifying fatty acid 
structures by altering the cis-to-trans configuration of fatty 
acyl side chains. Another adaptive mechanism involves 
increasing cell wall cross-linking and altering cell wall 
hydrophobicity. 
 
5. HYDROCARBON BIOREMEDIATION 
Bioremediation is the process by which microorganisms, or 
their enzymes convert pollutants or contaminants back to 
non-toxic states, returning them to the environment. It is 
particularly effective for pollutants such as chlorinated 
pesticides. For degradation, bacterial strains may be added 
as biosurfactants in oil spills to facilitate decomposition 
[30]. Biodegradation can be categorized as either 1) 
aerobic or 2) anaerobic [31]. For complex pollutants, a 
sequential aerobic–anaerobic process is often employed to 
enhance remediation effectiveness. Fungal strains are also 
used for efficient biodegradation [9], as seen in 
Mediterranean Sea oil-polluted sites [32].  
 
Bioremediation techniques can be classified as in situ or ex 
situ, depending on the location of waste treatment. In ex 
situ methods, contaminated soil and water are removed 
from the environment for treatment. Conversely, in situ 
methods involve treating pollutants directly at the site 
[33]. Bioremediation efficacy depends on microbial 
composition, the specific contaminated site, and 

environmental conditions. Key strategies to enhance 
bioremediation efficiency include [13]: 
A. Introduction of microorganisms into the polluted 

environment: This can involve two approaches such 
as Bioaugmentation and Use of engineered microbes. 

B. Engineered bioremediation: This strategy 
encompasses two main methods including 
Biostimulation and Surfactant-assisted 
bioremediation.  

 
5.1. Bioaugmentation 
Bioaugmentation is defined as the addition of specific 
microbial strains (natural, exotic, or engineered) with 
particular catabolic abilities to polluted sites  [34]; [35]. 
This method is used to enhance biodegradation efficiency. 
To stimulate the growth of native microorganisms that 
primarily feed on pollutants at the site, microbes are 
isolated from the polluted environment, cultured 
separately, and potentially genetically modified before 
reintroduction for remediation [36]. This technique can be 
applied using either allochthonous or autochthonous 
microbial strains.  
 
In autochthonous bioaugmentation (ABA), indigenous 
microorganisms were added to contaminated sites, and 
these isolated microbes are already adapted to the 
polluted environment [37], [38]. In contrast, allochthonous 
strains are non-native to the site and may struggle to adapt 
or integrate effectively with the indigenous microbial 
community. The biodegradation efficiency of 
autochthonous strains depends on suitable conditions for 
their growth and metabolism [39]. 
 
According to Fodelianakis et al. [40], allochthonous 
bioaugmentation did not significantly enhance 
hydrocarbon degradation in contaminated sediments, 
making autochthonous bioaugmentation generally more 
effective  [41]. Bioaugmentation is commonly conducted 
using mixed bacterial consortia. This approach has shown 
success in remediating sites contaminated with different 
PAHs, such as pyrene, anthracene, naphthalene, and 
dibenzoanthracene [42]. For example, adding Absidia 
cylindrospora increased polycyclic aromatic hydrocarbon 
degradation, removing more than 90% of fluorene within 
288 hours  [43]. 
 
In another study, Sarkar et al. [44] used a bacterial 
consortium isolated from drill cuttings, reintroduced via 
the autochthonous bioaugmentation method, achieving up 
to 66% alkane degradation within 12 weeks. Similarly, 
Koolivand et al. [45] reported successful biodegradation of 
over 91% within 12 weeks by reintroducing autochthonous 
isolates into the population. However, some studies 
indicate a decrease in biodegradation efficiency over time.  
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5.2. Use of Engineered Microbes 
Natural microbial species are often insufficient for the 
effective breakdown of certain pollutants, necessitating 
modifications through DNA manipulation. Genetically 
engineered microorganisms have demonstrated enhanced 
remediation efficiency for a broad range of pollutants, 
leveraging their diverse metabolic pathways to convert 
complex contaminants into simpler, harmless products 
[46]; [34]. Genetically modified organisms can degrade 
contaminants more rapidly than natural species and are 
competitive with indigenous microbial species, as well as 
resilient to various abiotic factors like temperature and pH. 
These GM organisms show significant potential for the 
biodegradation of a wide range of chemical and physical 
pollutants [47] and are used in the remediation of soil, 
groundwater, and activated sludge. 
 
It has been identified four microbial consortia capable of 
degrading petroleum hydrocarbons up to 92% within two 
months. The degradation-related genes identified were 
alkB, ndoB, xylA, cat23, and nidA1 [37]. In another study, 
mutant strains of Pseudomonas putida were utilized for 
crude oil degradation, achieving a 46.3% improvement 
compared to the parent strain [48]. Additionally, the gyrB 
gene responsible for crude oil and diesel oil degradation 
was isolated from Gordonia species, which were obtained 
from oil refinery-polluted soil.  
 
Now a days, isotope probing techniques, such as active 
^13C labeling, are used to identify phenanthrene 
degraders. This method has facilitated the identification of 
various fungal and bacterial species capable of degrading 
polycyclic aromatic hydrocarbons (PAHs) [49]. 
 
5.3. Biostimulation 
Biostimulation involves the addition of specific nutrients to 
contaminated sites to enhance bioremediation by 
indigenous microbes. This method typically includes 
adding limited nutrients to boost the population of native 
microbial communities. The marine environment, for 
example, is often low in oxygen and essential nutrients, 
such as phosphorus and nitrogen, which are critical for 
microbial activity. Additionally, pollutants in these 
environments have low bioavailability, which is a limiting 
factor. To address this, biostimulation is achieved by adding 
specific substrates that act as promoters to stimulate 
pollutant degradation [50]. In a study, adding organic 
nutrients to polluted soil containing 38,000 mg/kg of TPH 
resulted in a 100% removal of polycyclic PAHs within three 
months [51]. Compared to bioaugmentation, 
biostimulation has been found more effective, as 
bioaugmentation can lead to decreased biodiversity 
among soil microorganisms and a community enriched in 
PAH-degrading species [52].  
 

5.4. Biosurfactants 
Biosurfactants decrease surface tension and enhance the 
contact between pollutants and microorganisms, thereby 
increasing the bioavailability of pollutants and facilitating 
biodegradation. Several studies have demonstrated the 
effect of biosurfactants on the bioremediation process 
[53], [54]. Biosurfactants are used in various fields, 
including cosmetics, industrial applications, textiles, crude 
oil recovery, detergents, pharmaceuticals, biomedicine, 
and food processing industries. These compounds are non-
toxic, biodegradable, and can function under extreme 
conditions of temperature, salinity, and pH [55], [56]. This 
makes biosurfactants more advantageous than chemical 
surfactants. Recently, biosurfactants have become a 
promising alternative for biodegradation. Numerous 
studies have highlighted their biotechnological 
applications. 
 
Significant biosurfactant production and emulsification 
activities have been identified in bacteria such as 
Stenotrophomonas, Acinetobacter, Bacillus, Pseudomonas, 
Kocuria, and Bacillus strains isolated from hydrocarbon-
polluted environments [57]. Various bacterial genera, 
including Corynebacterium, Rhodococcus, Pseudomonas, 
Bacillus, Achromobacter, and Ochrobactrum, are also 
effective biosurfactant producers [58], [59]  and are 
frequently used in biotechnological applications.  
 
Biosurfactants produced by Pseudomonas species, known 
for their glycolipid structure, were characterized as 
rhamnolipids, which enhanced both biodegradation 
processes and oil recovery [54], [58]. Bacillus subtilis 
produces a lipopeptide biosurfactant called surfactin, 
widely used in commercial applications [60]. Additionally, 
a study reported the use of rhamnolipids from 
Burkholderia plantarii in pharmaceutical and industrial 
applications [61]. 
 
Bacillus subtilis produces surfactin, a lipopeptide 
biosurfactant used in commercial applications  [60]. 
Brevibacillus species have been found to produce 
biosurfactants that facilitate phenanthrene degradation. 
Similarly, phenanthrene biodegradation is stimulated by 
trehalose lipids produced by Rhodococcus erythropolis.  
 
5.5. Landfarming 
Landfarming is a bioremediation method, also known as 
land application or land treatment. In this method, 
sediments or contaminated soils are spread in a thin layer 
on a prepared, suitable surface. Microbial activity is 
stimulated by the addition of suitable nutrients and 
minerals or through aeration. The contaminated soil is 
periodically tilled or mixed to aerate the mixture. This 
method has been successful in degrading various 
hydrocarbons at polluted sites  [62]. Landfarming has 
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several advantages over other methods, including low cost, 
low energy consumption, and ease of implementation. 
Consequently, it is widely practiced for hydrocarbon 
degradation at polluted sites [63], [64].  
 
6.FACTORS AFFECTING BIOREMEDIATION TREATMENT 
Various physical and chemical factors influence the rate of 
hydrocarbon degradation. Key factors include the amount, 
nature, and type of hydrocarbons; the type of matrix 
(water, soil, sediment, or effluents); the activity of 
microbial communities; and environmental conditions 
such as humidity, pH, temperature, oxygen levels, and 
pollutant bioavailability [65]. 
 
6.1. Nutrient Availability 
Microbial activity, growth, and metabolism depend on the 
availability of inorganic elements like phosphorus, 
nitrogen, hydrogen, oxygen, and potassium [66]. 
Micronutrients such as manganese, nickel, iron, cobalt, 
zinc, chloride, and copper are also needed in trace 
amounts. The rate of biodegradation is influenced by 
carbon/nitrogen or carbon/phosphorus ratios, which tend 
to be high in hydrocarbon-polluted sites, thereby 
decreasing the rate of remediation. 
 
In aquatic environments, biodegradation was slow due to 
the low availability of nutrients [67]; [68], [69]. In open sea 
and intertidal environments, nutrients are often washed 
away. To address this, nutrient delivery systems have been 
developed for these environments. Fertilizers or oleophilic 
nutrients, which act as inorganic nutrient sources, are 
released gradually in these sites. Nitrogen and phosphorus 
sources are coated with hydrophobic compounds like 
vegetable oil or paraffin, providing a solution to nutrient 
washout and rapid dilution of water-soluble nutrients. 
Oleophilic components are located at the oil-water 
interface, promoting bacterial growth and metabolism. 
This method was considered to be highly effective [70]. 
Adding essential nutrients (N, P) balances microbial growth 
and reproduction, thereby enhancing biodegradation. In 
cold environments, carefully added nutrients can stimulate 
microbial metabolic activity, increasing the rate of 
biodegradation [20], [71]. 
 
6.2. Temperature 
Temperature is a critical factor for microorganisms involved 
in hydrocarbon degradation [72], [73], [74], [75]. Higher 
temperatures increase the bioavailability, solubility, 
distribution, and degradation rates of hydrocarbons, which 
enhances the ability of microorganisms to degrade them 
and raises the overall rate of biodegradation. However, at 
elevated temperatures, oxygen solubility decreases, 
potentially halting the degradation activity of aerobic 
microorganisms.  
 

Biodegradation is most efficient at optimal temperatures, 
rather than at excessively high or low temperatures. 
Lofthus et al. [76] reported that microorganisms can 
degrade PAHs in seawater at extreme temperatures, from 
as low as 0°C to as high as 50°C. Along the Mediterranean 
coast, Elsaeed et al. [77] studied the genes of 
microorganisms involved in biodegradation and found a 
correlation between temperature and the presence of 
genes related to biodegradation. At lower temperatures, 
the percentage of gene sequences associated with 
biodegradation ranged from 0.56% to 1.30%, but this 
increased by 5.6 times in medium-temperature sites (13-
24°C) [57], [67].  
 
Some researchers have confirmed that low temperatures 
reduce bacterial populations and catabolic diversity. In the 
Arctic, natural degradation is extremely slow due to very 
low temperatures. Oleophilic microorganisms became 
inactive because transport channels in the cell wall closed, 
and the cytoplasm frozen entirely [78], [70]. Enzymes 
involved in the degradation pathways are most active at 
optimal temperatures, with specific pollutants requiring 
specific temperature ranges for effective degradation. 
Microbial activity increases with a rise in temperature, 
reaching a maximum before sharply decreasing if 
temperatures continue to rise or fall beyond a certain 
point, ultimately halting at extreme temperatures.  
 
6.3. Oxygen Limitations 
Degradation of petroleum hydrocarbons (PHs) can occur 
under either aerobic or anaerobic conditions. During 
hydrocarbon metabolism, fungi and bacteria utilize 
molecular oxygen to oxidize substrates through 
oxygenases, making oxygen essential for most organisms 
involved in biodegradation. Although anaerobic 
degradation occurred in various environments, it was 
generally considered less significant [79], [13], as oxygen 
enhanced the catabolism of PHs [80]. Oxygen limitation is 
commonly encountered in aquatic soils and sediments, 
where dissolved oxygen levels can drop to zero, leading to 
anaerobic degradation. Various technologies are available 
to deliver oxygen to hydrocarbon-polluted sites, though it 
remains challenging in marine environments. For aerating 
the upper layers of polluted areas, tilling was used during 
low tide [20], [81], [8]. 
 
6.4. pH 
pH is another crucial factor affecting microbial activity and 
the biodegradation process. Soil pH levels indicate the 
potential for microbial growth, and even slight changes in 
pH can significantly impact metabolic activity. Extreme pH 
ranges reduced microbial activity and biodegradation 
efficiency [82], [83], [84]. Most fungi and bacteria degrade 
PHs best at neutral pH. For instance, phenanthrene was 
degraded by Burkholderia cocovenenans at pH 5.5 up to 
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40%, while at neutral pH, the degradation rate reached 
80%  [85], [86], [87]. Leahy and Colwell [88] reported that 
naphthalene degradation was reduced at pH 5.0, with the 
highest degradation occurring at pH 7. Some studies have 
shown that Pseudomonas species degraded PHs at alkaline 
pH levels [46]. (Liu et al., 2019), while other studies have 
reported hydrocarbon degradation at pH 2 in acidic 
environments [89]. The appropriate pH for bioremediation 
depends on the specific microorganisms used.   
 
6.5. Bioavailability of Hydrocarbons  
Bioavailability is a key factor in hydrocarbon degradation, 
as it determines the rate at which a substrate is transferred 
into the microbial cell. Polycyclic aromatic hydrocarbons 
(PAHs), being less soluble in aqueous environments, have 
low bioavailability, which made them resistant to 
degradation and persistent in nature [90]. Studies have 
indicated that the bioavailability of PHs decreased over 
time. When PAHs dissolve or evaporate, they become more 
bioavailable [91]. Photo-oxidation can also enhance the 
bioavailability of petroleum hydrocarbons, thus increasing 
microbial activity and biodegradation [92]. The use of 
surfactants, applied or sprayed in polluted areas, can 
increase the bioavailability of contaminants at these sites, 
promoting more effective bioremediation.  
 
7. DISTRIBUTION OF HYDROCARBON-DEGRADING 
MICROORGANISMS  
Many studies have shown that a wide range of 
microorganisms isolated from polluted areas can degrade 
petroleum hydrocarbons (PHs). A recent study reported 
103 fungal, 79 bacterial, 9 cyanobacterial, and 14 algal 
species capable of utilizing hydrocarbons as carbon and 
energy sources [70].  Numerous studies have indicated that 
microorganisms from polluted environments found to be 
highly efficient in hydrocarbon degradation [93]. 
Approximately 25 bacterial genera capable of degrading 
PHs have been found in marine ecosystems [38]. Although 
oil spills in the sea were toxic to many microbes, some were 
resistant and able to degrade pollutants; nearly 25 
hydrocarbon-degrading bacterial genera have been 
isolated in such environments [66], [12].  
 
Bacteria that use hydrocarbons as their sole carbon source 
were referred to as obligate hydrocarbon clastic bacteria 
(OHCB) [94], [95]. Before hydrocarbon contamination, 
OHCBs represented about 0.1% of the total microbial 
population [96], [97], but after contamination, their 
population increased significantly, with OHCBs becoming 
1-2% of the most dominant species. Only a limited number 
of these organisms could be cultivated. Another study 
reported three bacterial strains isolated from the oil -
polluted environment of the Khurais oil field, Dhahran, 
Saudi Arabia, identified as Pseudomonas aeruginosa, 

Bacillus subtilis, and Bacillus cereus, based on their ability 
to grow in the presence of hydrocarbons [98].   
 
In another study, bacterial communities were investigated 
in four soil samples collected from the top layers of diesel 
oil-contaminated and engine oil-contaminated soils, as 
well as top and middle layers of uncontaminated soils. This 
study identified 25 phyla, 53 classes, 108 orders, 199 
families, and 292 genera in various soil samples, with 
biodiversity differing significantly in oil-polluted samples. 
In engine oil-contaminated soil, seven bacterial genera 
(Sulfuritalea, Sphingomonas, Alkanindiges, Rhodococcus, 
Nocardioides, Rhodoplanes, and Actinobacteria norank) 
were found to be effective biodegraders, with Rhodococcus 
and Nocardioides known to produce biosurfactants [5]. 
Pseudomonas NCIM 5514, a petroleum-degrading 
organism, was identified in the crude oil-contaminated 
area of Ankleshwar, Gujarat, India [99].  
 
Several polycyclic aromatic hydrocarbon (PAH)-degrading 
microbial species, such as Microbacterium sp. BPw, 
Novosphingobium sp. PCY, Alcaligenes sp. SSK1B, Ralstonia 
sp. BPH, and Achromobacter sp. SSK4, have also been 
identified in mangrove sediments [100], [101].   
 
8. MECHANISM OF HYDROCARBON DEGRADATION 
The biodegradation rate of petroleum hydrocarbons 
generally follows this trend: n-alkanes > branched alkanes 
> low molecular weight aromatics > cyclic alkanes. Resins 
and asphaltenes are the most recalcitrant compounds 
among petroleum hydrocarbons [102]. 
 
8.1. Alkane-Degrading Bacteria 
Alkanes are saturated hydrocarbons primarily composed of 
carbon and hydrogen atoms. Alkanes constitute the major 
fraction of crude oil, accounting for more than 50%, 
depending on the oil type and source. Various aerobic and 
anaerobic microorganisms, including bacteria, fungi, and 
yeasts, have the metabolic capacity to utilize alkanes as 
their sole carbon and energy source. Bacterial degradation 
of alkanes, primarily through aerobic processes, has been 
well-studied [103]. Degradation of n-alkanes is particularly 
well-understood compared to other types of petroleum 
hydrocarbons. Alkane biodegradation typically requires 
oxygen, with alkane hydroxylase as a key enzyme in the 
process of degradation [104]. Methane monooxygenase 
was involved in the degradation of short-chain alkanes 
(C2–C4) [105].  
 
Medium-chain alkanes (C5–C17) are degraded by multiple 
hydroxylases, including cytochrome P450 and 
monooxygenases such as AlkB  [105]. Long-chain n-alkanes 
(C18 and above) required alkane hydroxylases for 
degradation [106], [107]. For the breakdown of these long 
chains, multiple alkane hydroxylases were often involved 
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[107]. Alcanivorax spp. was commonly associated with 
alkane degradation in polluted sites [94]. The alkB gene, 
responsible for encoding alkane hydroxylase, plays a crucial 
role in degrading medium to long-chain alkanes. This gene 
was first identified in Pseudomonas putida and has since 
been found in numerous hydrocarbon-degrading 
organisms, known as hydrocarbon clastic bacteria [104]. 
Approximately 250 alkB gene homologs have been 
identified in hydrocarbon-degrading Alcanivorax spp.   
 
8.2. Polycyclic Aromatic Hydrocarbon (PAH) Degradation 
The first step in PAH degradation in hydroxylation, with 
monooxygenases and dioxygenases serving as the primary 
enzymes involved in this process. Dioxygenases are enzyme 
complexes composed of ferredoxin, reductases, and 
terminal oxygenase subunits. Many bacteria metabolize 
PAHs through cytochrome P450, converting them to 
carbon dioxide and water in the presence of oxygen [101].  
 
Anaerobic biodegradation of PAHs was found to be a very 
slow process. While few PAHs could be degraded under 
anaerobic conditions, some reported examples include 
anthracene, fluorene, phenanthrene, fluoranthene, and 
acenaphthene  [104]. 
 
9. CONCLUSION AND FUTURE PROSPECTS 
Hydrocarbons in crude oil mixtures pose hazardous risks to 
humans and animals. Conventional techniques for 
reclaiming oil-contaminated soils are often costly. 
Bioremediation techniques, such as biostimulation and 
bioaugmentation, involve the use of microorganisms to 
transform hazardous PAHs and other hydrocarbons into 
less or non-hazardous compounds, making this approach 
cost-effective and time efficient. Biodegradation is 
influenced by various factors, including environmental 
conditions (temperature, pH), types of microorganisms, 
pollutant types, and hydrocarbon bioavailability. 
Numerous studies have shown that microorganisms 
isolated from oil-contaminated sites can effectively 
degrade PAHs. Genetically modified organisms (GMOs) can 
degrade pollutants faster than natural species, competing 
well with indigenous microbial species, predators, and 
various abiotic factors such as temperature and pH. Alkane 
hydroxylase is a key enzyme in the degradation of alkane 
hydrocarbons, with alkB genes playing a role in the 
breakdown of medium to long-chain alkanes by encoding 
alkane hydroxylase. Monooxygenases and dioxygenases 
are involved in PAH degradation.   
 
In our view, several strategies can be implemented to make 
microbial bioremediation processes more efficient, as 
outlined below:   
 

i. Screening microorganisms capable of effectively 
degrading PAHs in oil-contaminated soils.   

ii. Constructing novel bacterial consortia for enhanced 
hydrocarbon degradation.   

iii. Investigating the biochemical pathways and 
molecular mechanisms involved in PAH 
biodegradation.   

iv. Using genetic engineering to create engineered 
bacteria capable of growing in extreme reservoir 
conditions and producing adequate metabolites with 
desired properties.   

v. Applying biosurfactants to enhance oil recovery, as 
heavy oil resources represent a substantial 
potentially recoverable petroleum energy resource.   

vi. Optimizing environmental conditions on-site to 
promote biodegradation. 
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