

PROTEIN – LIGAND BINDING

(Precaution to be taken to avoid the occurrence of wrong result)

Manjunath.R

#16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India
*Corresponding Author Email: manjunath5496@gmail.com

ABSTRACT

The dissociation of a protein – ligand complex (PL) can be described by a simple equilibrium reaction $PL \rightleftharpoons P + L$ the corresponding equilibrium relationship is defined K[PL] = [P][L] (K = dissociation constant) In this equation $[P] = [P]_T - [PL]$ and $[L] = [L]_T - [PL]$ where $[P]_T$ and $[L]_T$ are the initial total concentrations of the protein and ligand, respectively. **Case1:** If we substitute $[L]_T - [PL]$ for $[L]_T - [PL]_T - [PL]_T$

KEYWORDS

Protein -ligand binding, protein - ligand complex, equilibrium reaction, dissociation constant.

CASE 1

Using the equilibrium relationship

K [PL] = [L] [P]and substituting,

 $[L]_T - [PL]$ for [L]

 $[P]_T - [PL]$ for [P]

Gives:

 $K[PL] = \{[L]_T - [PL]\}\{[P]_T - [PL]\}$

 $= [L]_{T}[P]_{T} - [PL][L]_{T} - [PL][P]_{T} + [PL]^{2}$

Dividing throughout by [PL] gives:

 $K = \{[L]_{T}[P]_{T}/[PL]\} - [L]_{T} - [P]_{T} + [PL]$

But

 $[P]_T = [PL] + [P]$

And, therefore,

 $K = \{[L]_{T}[P]_{T}/[PL]\} - [L]_{T} - [P]$

 $= [L]_{T}(\{[P]_{T}/[PL]\}-1)-[P]$

From this it follows that

 $K + [P] = [L]_T[P] / [PL]$

Rearranging

 $[PL] = [L]_{T}[P] / K + [P]$

DISCUSSION

This defines a rectangular hyperbola with several important regional properties:

- 1. Saturation: when [P] >> K, [PL] asymptotically approaches [L] _T.
- Half-saturation: when [P] = K, [PL] = [L] _T/2 in other word, the dissociation constant is equal to the (free) protein concentration needed to ensure that 50% of the ligand will be bounded.
- 3. Linearity: when [P] << K, [PL] is \sim proportional to [P] with slope = [L] $_{\rm T}/$ K.

CASE 2

Using the equilibrium relationship

K [PL] = [L] [P] and substituting,

 $[P]_T - [P]$ for $[PL][L]_T - [PL]$ for [L]

 $[P]_T - [PL]$ for [P]

Gives:

 $K\{[P]_T - [P]\} = \{[L]_T - [PL]\}\{[P]_T - [PL]\}$

 $K[P]_{T} - K[P] = [L]_{T}[P]_{T} - [PL]_{T}[L]_{T} - [PL]_{T}[P]_{T} + [PL]_{T}[P]_{T}$

[PL] 2

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)

(1)

Rearranging

$$K [P]_T - [L]_T [P]_T + [PL]_T [P]_T = -[PL]_T [L]_T + [PL]_T^2 + \kappa [P]_T^2$$

$$[P]_T \{K - [L]_T + [PL]\} = [PL] \{-[L]_T + [PL]\} + K[P]$$

Further, if we substitute

$$[L]_T = [PL] + [L]$$

Then we get

$$[P]_T \{K - [PL] - [L] + [PL]\} = [PL] \{-[PL] - [L] + [PL]\} + K [P]$$

$$[P]_T \{K - [L]\} = - [PL] [L] + K [P]$$

Which is the same as:

$$[P]_T \{K - [L]\} = K [P] - [PL] [L]$$

$$K - [L] = K \{ [P] / [P]_T \} - \{ [PL] / [P]_T \} [L]$$

Labeling

[P] / [P] $_{T}$ as F_{FP} (fraction of free protein) and [PL] / [P] $_{T}$ as F_{BP} (fraction of bound protein) then above expression turn into

$$K - [L] = K F_{FP} - F_{BP} [L]$$
 (2)

DISCUSSION

- 1. If $F_{FP} = F_{BP}=1$, then the LHS = RHS, and the Eq. (2) is true.
- If F_{FP} = F_{BP}≠1, then the LHS ≠ RHS, and the Eq.
 (2) is invalid.

Let us now check the validity of the condition " $F_{FP} = F_{BP} = 1$ ".

As per the protein conservation law,

$$[P]_T = [PL] + [P]$$

From this it follows that

$$1 = F_{BP} + F_{FP}$$

If we assume $F_{BP} = F_{FP} = 1$, we get:

$$1 = 2$$

The condition $F_{FP} = F_{BP} = 1$ is invalid, since 1 doesn't = 2.

In fact, the only way it can happen that K - [L] = K - [L] is if both $F_{FP} = F_{BP} = 1$. Since $F_{FP} = F_{BP} \neq 1$, Eq. (2) does not therefore hold well.

CASE NOTES

CASE 1

If we substitute [L] $_{T}$ – [PL] for [L] and [P] $_{T}$ – [PL] for [P], then equilibrium relationship K [PL] = [L] [P] becomes

$$K[PL] = ([L]_T - [PL]) ([P]_T - [PL])$$

From this it follows that

$$[PL] = [L]_{T}[P] / K + [P]$$

CASE 2

If we substitute [L] $_{T}$ – [PL] for [L], [P] $_{T}$ – [PL] for [P] and [P] $_{T}$ – [P] for [PL], then equilibrium relationship K [PL] = [L] [P] becomes K ([P] $_{T}$ – [P]) = ([L] $_{T}$ – [PL]) ([P] $_{T}$ – [PL]) From this it follows that

$$K - [L] = K F_{FP} - F_{BP} [L]$$
 (wrong result)

CONCLUSION

Substitution for '[PL]' along with the substitutions for '[L]' and '[P]' should be avoided in order to prevent the occurrence of wrong result.

REFERENCES

- Binding D B by Michael K. Gilson, pharmacy.ucsd.edu/labs/Gilson/BindingDB-Intro.pdf (2009).
- Biochemistry by Reginald H. Garrett and Charles M. Grisham (chapter 5), © 2010 by Brooks/Cole, Cengage Learning Inc.
- Enzymes: Biochemistry Biotechnology Clinical Chemistry by Trevor Palmer (Chapter 12), © 2001 by Horwood Pub Ltd.

*Corresponding Author:

Manjunath.R

(Email: manjunath5496@gmail.com)

#16/1, 8th Main Road, Shivanagar, Rajajinagar,

Bangalore560010, Karnataka, India