

CONGENITAL HEART DISEASE IN INFANTS IN GULBARGA REGION OF KARNATAKA

Sandeep V.Harshangi, Laxmi Nagaraj Itagi, Venkatesh Patil, Vijayanath.V

¹Assistant Professor, Department of Pediatrics, M.R.Medical College, Gulbarga,Karnataka,Indi

²Assistant Professor, Department of obstetrics & Gynecology, M.R.Medical College, Gulbarga,Karnataka,India

³Associate Professor, Department of Pharmacology, Navodaya Medical College, Raichur,Karnataka, India

⁴Associate Professor, Department of Forensic Medicine & Toxicology, VMKV Medical College

Salem, Tamil Nadu, India

ABSTRACT

Congenital heart diseases are primarily disease of neonates, infants and children. The burden of CHD in India is likely to be enormous due to very high birth rate. The reported incidence is 8-10/1000 live births. To know the pattern of clinical presentation of various congenital heart diseases in 0-1 year age group. 50 cases of CHD proven by 2D echocardiography were studied for 2 years period. Present study included all infants in birth — one year age group and excluded all preterm babies and patient with persistent pulmonary hypertension. Out of the 50 cases of congenital heart disease. Growth retardation and CCF were the commonest complication. The mortality rate was 18% with VSD as the leading cause of death among the CHD. The commonest cause of death among these patients was refractory CCF. A cardiac evaluation with echocardiography is also necessary in all cases of LRTI and FTT. Early diagnosis, close monitoring and timely intervention in cases of CHD will go a long way in reducing the morbidity and mortality to a large extent.

KEY WORDS

Congenital heart disease; 2D echocardiography

INTRODUCTION

Congenital Heart Diseases (CHD) are primarily seen in neonates, infants and children, although in our country it is not uncommon to see adults with uncorrected CHD. The burden of congenital heart disease in India is likely to be enormous due to a very high birth rate. This heavy burden emphasizes the importance of this group of heart diseases. The reported incidence of CHD are 8-10/1000 live births according to various studies from different parts of the world. It is believed that this incidence has remained constant worldwide. 2

Nearly one-third of these CHD are critical requiring intervention in the first year of life itself.³ Rapid advances have taken place in the

diagnosis and treatment of CHD over the last six decades. There are diagnostic tools available today by which an accurate diagnosis of CHD can be made even before birth. With currently available treatment modalities, over 75% of infants born with congenital heart disease can survive beyond the first year of life and many can lead normal lives thereafter. However, this early diagnosis privilege of and timely management is restricted to children in developed countries only. Unfortunately majority of children born in developing countries with CHD do not get the necessary care, leading to high morbidity and mortality.

There is no community based data for the incidence of congenital heart disease at birth in

India. Since a large number of births in our country take place at home, mostly unsupervised by a qualified doctor, hospital statistics are unlikely be truly representative. The congenital heart disease has been the subject of innumerable studies both regarding prevalence and clinical features in western countries. The few studies carried out in India were either community or school based and they did not indicate the clinical profile of CHD. It was therefore decided to carry out hospital based study of clinical profile of congenital heart disease in infancy at Basaveshwar Teaching & General Hospital and Sangameshwar Teaching

OBJECTIVES

Gulbarga.

To know the pattern of clinical presentation of various congenital heart disease in 0-1 year age group.

Hospital attached to M.R.Medical College,

METHODOLOGY

Methods of collection of data:

Infants presenting with features suggestive of congenital heart disease and proven by 2D echocardiography were studied over a period of 2 years from October 2005 to September 2007 admitted in Sangameshwar Hospital, Gulbarga and Basaveshwar Teaching & General Hospital, Gulbarga.

Inclusion Criteria:

All patients presenting with clinical features like breathlessness, recurrent LRTI, failure to thrive,

cyanotic spells, congestive cardiac failure, murmur in the age group of term neonates to first birthday.

Exclusion Criteria:

- Preterm neonates.
- More than one year.
- Patients with persistent pulmonary hypertension.

RESULTS

In this clinical study, compromising of age 0-1 years, 50 cases of proven CHD were studied in the Department of Paediatrics of M.R.Medical College, Gulbarga at Basaveshwar Teaching & General Hospital and Sangameshwar Hospital, Gulbarga from October 2005 to September 2007. Following observations were made in the present study.

Table-1: Age specific incidence of CHD

Age	No. of cases	Percent
Birth – 1 week	15	30.00
1 week – 1 month	6	12.00
1 month – 1 year	29	58.00
Total	50	100.00

Majority of patients in this study i.e., 58% presented in the 1 month to 1 years period, whereas 42% presented in the neonatal life, of which 30% were in the early neonatal period and 12% in late neonatal period.

Table-2: Sex of Children

Sex	No. of cases	Percent
Male	26	52.00
Female	24	48.00
Total	50	100.00

52% of the children were male, while 48% were female with a ratio of 1.08:1.

Table-3: Residence

Residence	No. of cases	Percent	
Urban	37	74.00	
Rural	13	26.00	
Total	50	100.00	

Majority of the patients i.e., 74% of cases were from urban area and 26% were from rural area.

Table-4: Consanguinity

Consanguinity	No. of cases	Percent		
First degree				
Second degree	7	14.00		
Third degree	5	10.00		
Non-consanguinity	38	76.00		
Total	50	100.00		

In the present study, 76% of the cases reported a non-consanguineous marriage and 24% has history of some degree of consanguinity with 14% showing a second degree and 10% having third degree consanguinity marriage.

Table-5: Birth order

Birth order	No. of cases	Percent		
First	10	20.00		
Second	16	32.00		
More than two	24	48.00		
Total	50	100.00		

In 48% of the cases, birth order was more than 2 and in 32% birth order 2 and only 20% had birth order of one.

Table-6: Immunization Status of Patient

Immunization Status	No. of cases	Percent
Completely immunized	20	40.00
Partial	9	18.00
Unimmunized	21	42.00
Total	50	100.00

In this study 42% of patients were unimmunized and 58% had some immunization with 40% complete and 18% had partial immunization.

Table-7: Birth History

•				
Birth history	No. of cases	Percent		
Uneventful	40	80.00		
Birth asphyxia	5	10.00		
MAS	5	10.00		
Total	50	100.00		

Majority of children had an uneventful delivery, while 20% had significant birth history in the form of birth asphyxia and meconium aspiration syndrome.

Table-8: Age and Sex Incidence of Specific CHD

Defeate	Birth –	Birth – 1 week			One week – one month			1 month – 1 year		
Defects	Male	Female	Total	Male	Female	Total	Male	Female	Total	Total
Acyanotic										34
VSD	1	1	2		1	1	5	7	12	15
ASD	1	1	2	1		1	3	2	5	8
PDA		1	1	1		1	2	1	3	5
AVSD					1	1		1	1	2
Dextro cardia	1	1	2							2
НОСМ					1	1				1
COA							1		1	1
Cyanotic										16
TOF		1	1				3	2	5	6
TGV	2		2		1	1				3
TAPVC	1	1	2							2
Ebstein	1	-	1				1		1	2
DORV								1	1	1
Dextrocar dia with pulmonar y atresia with PDA	1		1							1
Dextrocar dia with tricuspid atresia with ASD		1	1							1
Total			15			6			29	50

In present study VSD (30%) was the commonest CHD followed by ASD (16%) in the acyanotic group and among cyanotic CHD, TOF (12%) was the commonest followed by TGV (6%).

DISCUSSION

Congenital heart disease (CHD) occurs in 0.5 – 0.8% of live born children with a higher percentage in those aborted spontaneously or still born. CHD has become an important cause of morbidity and mortality in infancy and accounts for two third of all major birth defect along with neural tube defect. 2 – Dimensional

echocardiography with colour Doppler has revolutionized the diagnosis and management of cardiac malformation. It is a non invasive investigation that can precisely diagnose most congenital heart disease as well as offer treatment options, whether medical or surgical. In view of this we undertook the present study to evaluate the clinical profile of CHD in infancy

at Basaveshwar teaching and general hospital

and Sangmeshwar hospital of M R Medical

IJPBS | Volume 3 | Issue 1 | JAN-MAR | 2013 | 322-329

College Gulbarga over a period of two years from October 2005 to September 2007.

Profile of CHD and Comparison of our findings with other studies

Type of defect	Present study (n=50)	Tank S et al (2004) (n=147)	Kasturi et al (1999) (n=108)	Vashisth a et al (1993) (n=44)	Rao VS et al (1974) (n=400)	Jain KK et al (1971) (n=55)	Bidwai et al (1971) (n=378)
Acyanotic							
VSD	15 (30.00)	54 (36.73)	29 (27.00)	18 (40.90)	45 (40.90)	25 (45.40)	91 (24.00)
ASD	8 (16.00)	18 (12.25)	26 (24.00)	5 (11.40)	26 (23.60)	2 (3.60)	20 (21.96)
PDA	5 (10.00)	7 (4.76)	7 (6.00)	2 (2.40)	39 (35.40)	3 (5.40)	39 (10.30)
AVSD	2 (4.00)	3 (2.04)	1		1		1
Dextro cardia	2 (4.00)	1 (0.68)					
HOCM	1 (2.00)	1 (0.68)					
COA	1 (2.00)	1 (0.68)				1 (1.80)	
Cyanotic							
TOF	6 (12.00)	26 (17.68)	10 (9.00)	6 (13.60)	53 (28.60)	10 (18.60)	
TGV	3 (6.00)	8 (5.42)	3 (3.00)	1 (2.30)	25 (13.5)	1 (1.80)	
TAPVC	2 (4.00)	4 (2.72)	1 (1.00)		4 (2.16)		
Ebstein	2 (4.00)	5 (3.40)	1 (1.00)		4 (2.16)		1
DORV	1 (2.00)	2 (1.36)					
Dextrocardia with pulmonary atresia with PDA	1 (2.00)						
Dextrocardia with tricuspid atresia with ASD	1 (2.00)						

Present study had 34 cases of acyanotic CHD (68%) and 16 cases of cyanotic CHD (32%). The preponderance of acyanotic CHD is in concordance with the results of other Indian³ and western studies.^{4,5} Similar incidence was reported by Tank S et al⁹ 2004 (5.4%). In our study there were two cases each of Ebsteins anomaly (4%), TAPVC (4%), AVCD (4%),

Dextrocardia (4%). We found one case each of cardiomyopathy (2%), CoA (2%), DORV (2%) and tricuspid atresia (2%). This observation is slightly higher than other Indian studies⁵ as shown in the above table.

Sex Distribution:

Following studies show male preponderance, Samanek M et al⁶ 1990 (1.09:1), Rao VS et al⁷

Available Online through www.ijpbs.com (or) www.ijpbsonline.com

1974(1.25:1), Kinare SG et al⁸ 1981(1.23:1), Tank S et al⁷ 2004 (1.88:1) In the present study, 26 patients (52%) are male and 24 patients (48%) were female with a male to female ratio of 1.08:1. It shows slight male preponderance for CHD. Present study is in corcordance with Samnek M et al⁶ (1990). There are gender differences in the occurrence of specific heart lesions.

Age Specific Incidence

When considering the age of presentation, maximum cases were in infancy (58%). There were only 42 % cases in neonatal period, as was also seen with other Indian studies. In west, however there is higher number of patients in neonatal period which could be due to the fact that fetal echocardiography forms part of their routine antenatal examination.

Locality

In the present study nearly 3/4th cases were from urban areas (74%) and 1/4th were from rural area (26%). This distribution may not be a reflection of true incidence and this discrepancy can be attributed to the availability of specialized care, specialist doctors and advanced facilities in urban areas.

Etiological Factors

According to Nora¹⁰ study, the most vulnerable time for damage due to exposure to teratogenic agents is between 18-60 days. In the present study, no significant antenatal history of any drug intake or infection or exposure to radiation could be elicited.

Sibling Affected

Nadas and Fyler¹¹ have mentioned that 2% of sibling may suffer from similar complaints and Nora has observed that 0.3% of sibling can have similar cardiac malformation. The present study reported occurrence of 2 cases which had complaints among siblings with congenital diseases. One had tracheo-oesophageal fistula and 1 patient with TOF had a sib who died at

early age because of a cyanotic CHD which could not be diagnosed. The findings in the present study correlates with observation of Nadas and Fyler.¹¹

Consanguinity

A study by Susan MB et al 12 1979 reported that first degree consanguinity was significantly associated with CHD. Shafi T et al¹³ 2003 reported that there was a significant association between children born of consanguineous marriage and risk of CHD. In this present study, it was found that 12 patients (24%) were products of consanguineous marriage, 7 patients (14%) were 2nd degree and 5 patients (10%) were products of 3rd degree consanguineous marriage. Rest 38 patients (76%) had no history of consanguinity. Hence it is clear consanguinity is a risk factor for development of CHD.

Birth Order

Tay JS et al¹⁴ (1982), studied association of birth order and CHD in 100 chinese children and 100 controls and he reported that higher incidence of CHD was present in children with higher birth order. Zhan SY et al¹⁵ (1991) reported that higher incidence of CHD was present in higher order babies. Incidence of CHD in 1st born babies was 20%, 2nd born was 32% and more than 2 was 48% in our study. The present study is in concordance with the above studies.

Immunisation

Tank S et al⁹ (2004) reported 15.46% of unimmunised cases, 55% cases completely immunized while 29.25% were partially immunized. Immunization was given according to UIP schedule in the study group. In the present study 20 patients (40%) were completely immunized till age, while 9 patients (18%) were partially immunized, 21 patients (42%) were unimmunized however these patients were all neonates. Present study reported slightly lower incidence when compared to this study. The

www.ijpbs.com (or) www.ijpbsonline.com

common reason stated for non immunization or partial immunization were recurrent LRTI's, FTT, ignorance and illiteracy about immunization.

Anthropometric Status

In this study, anthropometric status was assessed by ICMR charts. Length and weight were markedly affected in cases of CHD, with 82% patients of less than 50th percentile, out of which 52% patients were less than 10th percentile, and 30% were between 10 to 50th percentile. 9 patients (18%) had normal anthropometric status. Present study reported the similar observation as reported by other Indian³ and western studies.^{4,5}

CONCLUSION

Out of the 50 proven cases of congenital heart disease studied from October 2005 to September 2007, the highest incidence was noted in 1 month to 1 year age group. Out of the 50 cases of congenital heart disease.

Breathlessness, LRTI, FTT, fever, tachypnea, tachycardia, cyanosis were the common clinical presentation of majority of cases. Male preponderance was noted in both cyanotic and acyanotic CHD. These children were deprived of basic medical care in the form of immunization. In our study 40% reported complete immunization while 18% were partial immunized and 42% were unimmunised.

Malnutrition was seen in 82% having less than 50th percentile anthropometric data. Musculoskeletal anomalies were commonest extra cardiac anomaly with Down syndrome the next most common.

REFERENCES

- Fyler DC, Buckley LP, Hellenbrand WE, Cohn HE. Report of the New England Regional Infant Care program. Pediatrics. 1980; 65: Suppl: 375-461.
- 2. Abdullah R. What is the prevalence of congenital heart disease? Ped Cardio. 1997; 18: 268.
- 3. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Cardiol. 2002; 39: 1980-1900.
- Jackson M, Poskitt EM. The effects of high energy feeding on energy balance and growth in infants with congenital heart disease. Br J of Nutrition 1991; 65: 131-43.
- Mitchell IM, Logan RW, Polloc JC, Jamieson MP. Nutritional status of children with congenital heart disease. Br Heart J 1995; 73: 277-283.
- Samanek M, Slavik Z, Zbarilova B, Hrobonava V, Variskova M and Skovranek J. Prevalence anaqlysis of 91823 live born children. Pediatr Cardiol. 1989 Fall: 10(4): 205-11.
- 7. Rao VS, Reddi YR. Profile of heart in children. Indian J Pediatr. 1974; 41: 244-248.
- Kinare SG, Sharma S. Congenital heart disease in first year of life (an autopsy study of 270 cases). Indian J Pediatr. 1981; 48: 745-754.
- Tank S, Sushma M, Surekha J. Epidemiology of congenital heart disease among hospitalized patients. www.bhj.org/ journal/ 2004 4602 april.html. epidemiol.
- 10. Nora JJ and Nora AJ. The evolution of specific genetic and environmental counseling in congenital heart disease. Circulation 1978; 57: 205.
- 11. Nadas AS (1963). Pediatric Cardiology 790, Saunders, Philadelphia.
- 12. Susan M, Zoair AH, Corozon M, Richard MP. Consanguinity and congenital heart disease in Saudi Arabia. Am J Med Genetics. 1999; 99(1): 8-13.
- Shafi T, Khan MK, Atiq M. Congenital heart disease and associated malformation in children with cleft lip and palate in Pakistan. Br J Plast Surg. 2003 Mar; 56(2): 106-9.
- 14. Tacy JS, Yip WC and Joseph R. Parental age and birth order in Chiese children with congenital heart disease. Journal of Med Genetics. 1982; 19: 441-443.
- Zhan SR, Lian ZH, Zheng DZ, Gao L. Effect of fathers' age and birth order on occurrence of congenital heart disease. J Epidemiol Community Health. 1991 Dec; 45(4): 299-301.

Corresponding Author: Dr.Sandeep Harshangi

Assistant Professor, Department of Pediatrics M.R. Medical College, Gulbarga, Karnataka, India