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ABSTRACT  
Domain boundary prediction plays a very important part in all the tasks involved in Proteomics, like homology 

based predictions, protein structure predictions etc. Domains are distinct structural units of a protein that can 

evolve and function independently. The accurate prediction of protein domain linkers and boundaries is often 

regarded as the initial step of protein tertiary structure and function predictions. Here, we are presenting a tool, 

DOM_SVM that robustly identifies the linker regions of multi-domain proteins. A two-pronged strategy is used to 

distinguish the linker and domain regions of a protein chain, i.e., use of a strong feature-set consisting of 

physicochemical properties of Amino acids taken from the AAIndex as well as Protein Secondary Structure and 

Relative Solvent Accessibility, and using the Support Vector Machine as a best two class classifier. The Support 

Vector Machine(SVM) is explored for accurate prediction of domain and linker regions by training on the curated 

dataset obtained from the CATH database, with the consideration of getting maximum recall in case of domain 

boundary prediction. The software is then tested on 90 target proteins of the CASP-11 dataset in order to evaluate 

its prediction accuracy using three-fold cross-validation experiments. We have observed significant performance of 

this classifier in prediction of domain regions of CASP-11 targets. DOM_SVM achieves a high accuracy, recall and 

precision for most of the target proteins of the CASP-11 dataset. Hence, it can be concluded that in most cases, 

DOM_SVM achieves better performance compared to the existing state-of-the-arts. 
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INTRODUCTION 

Protein and genes are two important 

macromolecules present in cells of any living 

organism. Proteins in different forms are 

involved in most of the cell functions, apart from 

providing structural support to cell bodies. For 

synthesizing proteins, cells require information 

about the polypeptide chains or amino acid 

sequences that constitute different proteins. The 

information is encoded inside the genes through 

Deoxyribonucleic Acid (DNA) sequences. To 

know about cell functions very closely, it is 

necessary to map and sequence the genomes of 

different organisms. Success of Human Genome 

Project, aided by rapid DNA sequencing 

techniques, has become a landmark event in this 

regard. Under this project it has been possible to 

prepare the complete sequence of the human 

genome, estimated to contain about 3 billion 

base pairs of nucleotides in double helices of 

DNA molecular structures. Encouraged by this 

success, various research efforts were launched, 
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in the early period of 2000s, to map and 

sequence the genomes of a variety of organisms. 

A domain is a segment of a protein chain that 

can fold into a three dimensional structure 

independently. The overall 3D structure of the 

polypeptide chain is referred to as the protein's 

tertiary structure, whereas the domain is the 

fundamental building block of tertiary structure. 

It contains an individual hydrophobic core built 

from secondary structural units separated by  

loop regions. Due to the evolution, multi-domain 

proteins are likely to have emerged to create 

new functions. As a result, various proteins have 

been diverged from common ancestors by 

different combinations and associations of 

domains. To predict the tertiary structure of a 

protein, it is useful to segment the protein by 

identifying domain boundaries in it. The 

knowledge of domains is used to classify 

proteins and understand their structures, 

functions and evolution. So, it can be said that a 

domain is a structural and functional unit of 

protein. A number of methods so far have been 

developed to identify protein domains starting 

from their primary sequences which are mainly 

developed for prediction of multi-domains in 

protein chains. 

Galzitskaya et al. [1] have developed a method 

based on finding the minima in a latent entropy 

profile. This method correctly predicts the 

domain boundaries for about 60% proteins. A 

method DOMCUT[2], based on the difference in 

amino acid compositions between domain and 

linker regions, has been developed to predict 

linker regions among domains. The sensitivity 

and the selectivity, as achieved by this method, 

are 53.5% and 50.1% respectively. CHOPnet[3] 

uses evolutionary information, predicted 

secondary structure, solvent accessibility, amino 

acid flexibility and amino acid composition for 

predicting domains in protein chains. It achieves 

prediction accuracy of 69% on all proteins. 

Armadillo[4] is the another domain predictor 

which uses any amino acid index to convert a 

protein sequence to a smoothed numeric 

profile. The work is finally reported to have 

achieved 37% sensitivity for multi-domain 

proteins. PPRODO[5] uses evolutionary 

information in the form of the position specific 

scoring matrix of the target protein, which can 

be obtained through PSI-BLAST. This information 

has also been used for domain boundary 

prediction. Artificial neural network has been 

used there as a classifier. The overall accuracy of 

domain boundary prediction as achieved by 

PPRODO is 67%. Machine Learning based ab-

initio domain predictor DOMpro[6] uses 

recursive neural networks (1D- RNNs) to predict 

domains in a protein chain. To test the 

prediction accuracy of DOMpro, a curated 

dataset, derived from the CATH database is 

used. DOMpro is found to be correctly predicted 

the domains from the combined dataset of 

single and multi-domain proteins in 69% of the 

cases.  In the work of Sikder and Zomaya[7] , the 

inter-domain index value uplifts the 

performance of Domain Discovery of protein 

domain boundary assignment. The method has 

achieved 70% accuracy for multi-domain 

proteins. Cheng proposed a hybrid domain 

prediction web service, called DOMAC[8], by 

integrating template-based and ab-initio 

methods. The template-based method is used in 

DOMAC to predict domains for proteins having 

homologous template structures in protein Data 

Bank. As a result, the overall domain number 

prediction accuracies of the template-based and 

ab-initio methods are 75% and 46% respectively. 

To achieve a more accurate and stable predictive 

performance, a new machine learning based 

domain predictor, viz., DomNet [14] is trained 

using effective feature sets like a novel compact 

domain profile, predicted secondary structure, 

solvent accessibility information and inter-
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domain linker index. It is observed to have 

achieved 71% accuracy. FIEFDom[9]  is other 

type of multi-domain prediction where 

prediction is done using fuzzy mean  operator. 

This fuzzy operator assigns a membership value 

for each residue as belonging to a domain 

boundary thus finding contiguous boundary 

regions. Eickholt et al. [10]propose a new 

method DoBo where machine learning approach 

with evolutionary signals is used. It achieves 60% 

recall and 60% precision. Another SVM predictor 

DROP[11] with 25 optimal features distinguish 

domains from linkers very effectively. They use 

random forest algorithm to evaluate features. 

Based on creating a hinge region strategy, a new 

approach DomHR predicts domain boundary by 

computing profiles of domain Hinge-boundary 

(DHB) features. In the work of Sadowski[12], 

prediction of domain boundaries is done from 

inverse covariance’s using kernel smoothing 

based method and alpha carbon models. 

In the light of the above discussion, it appears 

that there is still scope for improvement for 

domain boundary prediction. Physicochemical 

properties of Amino Acids, predicted protein 

secondary structure, solvent accessibility and 

the use of SVM classifier appear to have the 

potential for the implementation of these ideas. 

 

MATERIALS AND METHODS 

The present work, DOM_SVM uses a strategy, 

i.e. designing of a strong feature set, and using 

SVM as a best classifier for a two class 

classification. The current experiment is 

conducted in two stages. In the first stage 354 

protein chains of the CATH database (version 

2.5.1) are used to perform a three-fold cross 

validation experiments on the three kernels of 

the SVM, namely, Linear, Polynomial and Radial 

basis function. Based on the evaluation metrics, 

the most suited and accurate SVM is chosen. 

This SVM is then used to test 90 CASP 11 target 

proteins in the second stage of the experiment. 

the datasets: 

CATH Dataset:- This experiment is trained on 

354 protein chains of the CATH database(version 

2.5.1). The average chain length of these amino 

acids lie between 300-500 residues; and each 

protein chain consists of, at an average, two 

domains connected by a linker.Here, we 

consider domain boundary region as within  ± 20 

residues from the true boundary assignment. 

CASP Dataset : DOM_SVM is tested on the target 

proteins of CASP 11 dataset available on 

www.predictioncenter.org. The CASP11 dataset 

consists of 90 target proteins with an average 

chain length of 250-350 residues. 

the feature set: 

The features taken for this work are a 

combination of structural information (like 

Protein Secondary Structure) and sequence 

information (like Average Flexibility indices, 

Hydrophobicity, Linker Propensity Index, 

Hydrophobicity scales, Polarity, Linker 

Propensity from Helical, etc) taken from the 

AAINDEX[13]. For a brief description of the 

features in the feature set, please refer Table 1. 

Description and relevance of choosing the 

features in the feature set are as given below. 

1. The Normalized Flexibility Parameters (B-

Values) (F8) 

The one of the reasons for flexibility and 

mobility is the presence of multiple 

domains in proteins. Structures of proteins 

in changing environment affect domain 

motions. Proteins are dynamic molecules 

that are in constant motion. As a 

consequence, the structural flexibility is  the 

responsible factor for protein’s mobility 

which is thereby associated with various 

biological processes such as molecular 

recognition and catalytic activity. Very 

often, it is found that linkers are composed 
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of flexible residues such that its adjacent 

domains can move independently. The 

Debye-Waller factor (B-value), which 

measures local residue flexibility, is widely 

used to measure residue flexibility. The 

prediction of flexibility may help to locate 

the position of linker and domain. In this 

work, Normalized average flexibility 

parameters (B-values) from the AAINDEX 

dataset have been taken as features as 

presence of multiple domains increases 

protein flexibility. 

2. The  Polarity (F7) 

The combination of polar and non-polar 

side chains constitutes the protein chain 

which governs the folding of a protein into 

3D structure. As domain is a unit of 3-D 

structure so, polarity has been considered 

as a feature from the AAINDEX dataset. 

3. The Amino Acid Linker Index (F3) 

To represent the preference for amino acid 

residues in linker or regions, a parameter 

called the linker index is defined by Sumaya 

and Ohara. The linker index Si for amino 

acid residue is defined as follows: 

𝑆𝑖 = −𝑙𝑛
𝑓𝑖
𝑙𝑖𝑛𝑘𝑒𝑟

𝑓𝑖
𝑑𝑜𝑚𝑎𝑖𝑛

 

where, 𝑓𝑖
𝑙𝑖𝑛𝑘𝑒𝑟  or𝑓𝑖

𝑑𝑜𝑚𝑎𝑖𝑛 , is the frequency 

of amino acid residue i in the linker or 

domain region. The negative value of Si 

indicates that the amino acid residue i 

preferably belongs to a linker region. From 

the AAINDEX dataset, linker index has been 

used as a feature. 

4. Hydrophobicity (F2) 

The arrangement of hydrophobic side 

chains into the interior of the molecule to 

avoid contact with aqueous environment 

determines the nature of folding. The 

average hydrophobicity for linkers is 

observed as 0.65± 0.09. Small linkers show 

an average hydrophobicity of 0.69 ± 0.11, 

while large linkers are more hydrophobic 

with 0.62± 0.08. The more exposed the 

linker, the more likely it is to contain 

hydrophilic residues. Greater 

hydrophobicity is found in more linker 

connections between two domains. 

5. Hydrophobicity Scale (F5) 

Hydrophobicity scales are values that define 

relative hydrophobicity of amino acid 

residues. The more positive the value, the 

more hydrophobic are the amino acids 

located in that region of the protein. These 

scales are commonly used to predict the 

Trans membrane alpha-helices of 

membrane proteins. When consecutively 

measuring amino acids of a protein, 

changes in value indicate attraction of 

specific protein regions towards the 

hydrophobic region inside lipid bi-layer. 

6. Linker Propensity From Helical And Non-

Helical (F9 & F10) 

Two main types of linker are identified; 

helical and non-helical. Helical linkers are 

thought to act as rigid spacers separating 

two domains. Non-helical linkers are rich in 

Prolines, which also leads to structural 

rigidity and isolation of the linker from the 

attached domains. This means that both 

linker types are likely to act as a scaffold to 

prevent unfavourable interactions between 

folding domains. 

7. Protein Secondary Structure (F12) 

The secondary structure of the protein 

sequence is also taken as one of the 

features. Three different secondary 

structure information (helix, sheet and coil) 

of every amino acid in the protein sequence 

has been considered here as one of the 

features.  

support vector machine as classifier: 

The Support Vector Machine, which is known for 

its superb generalization abilities with two class 
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data, is selected here to act as a classifier of 

domain and linker residues of target proteins. 

This learning machine was developed by Vapnik 

[14].  The central residue of each window of 

amino acids, constituting the target protein, can 

be represented as a point vector in the input 

feature space. Considering such points 

corresponding to all the residues of the protein, 

two clusters, one representing the domain 

region and the other non-domain linker region, 

are ideally formed in the input feature space. 

Traditionally, a pattern classifier finds a hyper-

plane or hyper-surface in the input feature space 

separating the two clusters. Out of the two class 

data, those representing the class of interest are 

called positive data and the other - negative 

data. In addition to performing linear 

classification, SVMs can efficiently perform a 

non linear classification by implicitly mapping 

their inputs into high-dimensional feature 

spaces. SVM represents an extension to 

nonlinear models of the generalized portrait 

algorithm developed by Vladimir[14]. Some of 

the popularly used Kernel functions of the SVM 

are given below: 

1. Radial basis function Kernel 

In machine learning, the (Gaussian) radial 

basis function kernel, or RBF kernel, is a 

popular kernel function used in 

various kernel-based learning algorithms. In 

particular, it is commonly used in support 

vector machine classification.  

The RBF kernel on two samples x and x', 

represented as feature vectors in 

some input space, is defined as: 

𝑘 𝑥, 𝑥′  = 𝑒𝑥𝑝  
‖𝑥 − 𝑥′‖2

2𝜎2
  

‖𝑥 − 𝑥′‖2 may be recognized as 

the squared Euclidean distance between 

the two feature vectors.  is a free 

parameter.  

2. Polynomial Kernel 

The polynomial kernel looks not only at the 

given features of input samples to 

determine their similarity, but also 

combinations of these. For degree-

d polynomials, the polynomial kernel is 

defined as 

𝑘 𝑥,𝑦 =  𝑥𝑇 + 𝑐 𝑑  

where x and y are vectors in the input 

space, i.e. vectors of features computed 

from training or test samples and c ≥ 0 is a 

free parameter trading off the influence of 

higher-order versus lower-order terms in 

the polynomial. When c = 0, the kernel is 

called homogeneous. 

3. Linear Kernel 

Given some training data D, a set 

of 𝑛 points of the form 

𝐷 =   𝑥𝑖 ,𝑦𝑖 ∨ 𝑥𝑖 ∈ 𝑅𝑝 ,𝑦𝑖 ∈  −1,1  
𝑛

𝑖 = 1
 

where the 𝑦𝑖  is either 1 or −1, indicating the 

class to which the point 𝑥𝑖  belongs. Each 

𝑥𝑖  is a 𝑝 dimensional real vector. We want 

to find the maximum margin hyper plane 

that divides the points having 𝑦𝑖 = 1 from 

those having  𝑦𝑖 = −1. 

 

 

RESULTS AND DISCUSSION 

The experimentation for this study has two 

parts. In the first part, Experiment-I, the Support 

Vector machine is trained with an unbalanced 

dataset with positive and negative samples in 

the ratio of 1:5. In the second part, a balanced 

dataset, i.e., ratio of positive and negative 

samples is 1:1, formed as a result of under 

sampling of the negative data is used to train the 

Support Vector Machine. The experimentation in 

both the parts is done in two stages. The first 

stage consists of three-fold cross-validation 

experiments with three kernels of the Support 

Vector machine, namely- Linear, Polynomial and 

Radial Basis Function, followed by the selection 

of the most accurate model. The second stage of 
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the experimentation encompasses the testing of 

90 CASP-11 target proteins on the selected 

model. 

evaluation metrics: 

The evaluation metrics used here are as follows: 

Accuracy (A) = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Precision (P) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall (R)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Sensitivity+(Se+) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Sensitivity –(Se-) = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Specificity +(Sp+) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Specificity –(Sp-) = 
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

 

where TP, TN, FP, FN stand for True Positive, 

True Negative, False Positive and False Negative 

respectively. 

experimentation 

experiment-I 

354 protein chains of the CATH database 

(version 2.5.1) have been considered for this 

experimentation, out of which, some proteins 

have been excluded as they contained 

unidentified regions. Over 1 lakh samples were 

derived from these proteins, among which 

90,000 samples were negative and 20,000 

samples were positive. To avoid any loss of data, 

3-fold cross validation experiments were 

performed with all the available samples, in 

which each data set had positive and negative 

samples in the ratio 1:5. The detailed view is 

presented in the Table 2.  

After the preparation of dataset, in the first 

stage of our experiment, 3-fold cross validation 

experiment were performed on three kernels of 

the Support Vector Machine i.e. Linear, 

Polynomial (Degree=2), RBF (Gamma=0.0901). 

The results of 3-fold cross validation are given in 

Table 3. 

 From Table 3, it is clear that the radial basis 

function kernel yields the best results.  Here the 

results were found to be most accurate for SVM-

I. Hence this case was further tested with 

different values of Gamma so as to properly 

tune the Support Vector Machine and to find the 

value of Gamma for which the best results can 

be obtained.  The results can be found on Table 

4. From Table 4, it has been found that the 

optimum value of Gamma is 0.013 where the 

best overall performance among all the values of 

Gamma has been achieved. This optimal Gamma 

value is used in the next stage of the experiment 

where this SVM is applied on 90 targets of CASP 

11 dataset to evaluate its prediction accuracy. 

Table 5 lists performance measures for the 90 

target proteins of the CASP 11 dataset.    

From Table 5, it can be stated that DOM_SVM 

achieves an average accuracy of 94.5% on 90 

targets of CASP 11 dataset. DOM_SVM shows 

promising results for 9 targets of the CASP 11 

dataset, and identifies linkers in the following 9 

targets - T0760, T0770, T0777, T0805, T0826, 

T0830, T0836, T0848 and T0851. 

experiment-II 

In the previous part of the experimentation, the 

SVM was trained with an unbalanced dataset 

(ratio positive: negative is 1:5). Training a 

classifier with an unbalanced dataset is generally 

a challenging issue. SVMs are no exception to 

this, as in this case, the SVM becomes biased 

towards the majority class [15]. So, to eliminate 

this problem, the second part of our 

experimentation is done with a balanced 

dataset, i.e. ratio of positive and negative 

sample is 1:1. The dataset is derived from the 

same CATH dataset as before. The detailed view 

is presented in the Table 6.  

After the preparation of dataset, in the first 

stage of the experimentation, 3-fold cross 

validation experiment were performed on three 

kernels of the Support Vector Machine i.e. 

Linear, Polynomial (Degree=2), RBF 
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(Gamma=0.3). The results of 3-fold cross 

validation are given in Table 7.  

From the Table 7, it is clear that the radial basis 

function kernel yields the best results.  Here the 

results were found to be most accurate for SVM-

III. Hence this case was further tested with 

different values of Gamma so as to properly 

tune the Support Vector Machine and to find the 

value of Gamma for which we can get the best 

results. The results are given in Table 8. From 

Table 8, it has been found that the optimum 

value of Gamma is 0.25, where the best overall 

performance among all the values of Gamma 

has been achieved. This optimal Gamma value is 

used in the next stage of the experiment where 

this SVM is applied on 90 targets of CASP 11 

dataset to evaluate its prediction accuracy. 

Performance measures for the 90 target 

proteins of the CASP 11 dataset is given in Table 

9.  

From Table 9, it can be stated that DOM_SVM 

achieves an accuracy of 94.2%, precision of 

0.9468 and recall of 0.9954 on an average on 90 

targets of CASP 11 dataset. DOM_SVM shows 

promising results for 12 targets of the CASP 11 

dataset, and identifies linkers in the following 12 

targets – T0760, T0770, T0780, T0801, T0805, 

T0813, T0819, T0826, T0830, T0836, T0843 and 

T0851.  

The difference between the predicted structure 

of these proteins, and the ones available in the 

CASP dataset is shown graphically in the 

following figures-  Figure 1 and Figure 2 (T0760) 

and  Figure 3 and Figure 4 (T0848). 

comparison of DOM_SVM with the existing 

state-of-the-arts: 

DOM_SVM is designed with the motive of 

demarcating domains and linkers in a given 

protein sequence. So far, it has been tested on 

90 CASP 11 targets, and it has been able to 

detect linkers in some of them as mentioned 

before. Those targets in which linkers were 

found by DOM_SVM, have been tested with 

other domain-linker predictor tools available, 

like DROP[11], DOMPred,  DoBo[10] etc. The 

results of this comparison have been tabulated 

in Table 10 (for the results of experiment I) and 

Table 11 (for the results of experiment II). 

  



Available Online through 

www.ijpbs.com (or) www.ijpbsonline.com                       IJPBS |Volume 5| Issue 2 |APR-JUN|2015|245-266 
 

 

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605) 

Piyali Chatterjee* et al  Int J Pharm Bio Sci 

www.ijpbs.com or www.ijpbsonline.com 

 

P
ag

e2
5

2
 

Table 1. Amino Acids features selected from the AAIndex database 

Feature no. AAIndex 

Accession_no 

Brief Feature Description 

F1 BHAR880101 Average flexibility indices 

F2 JOND750101 Hydrophobicity 

F3 SUYM030101 Linker propensity index 

F4 GEOR030103 Linker propensity from 2-linker dataset 

F5 PONP930101 Hydrophobicity scales 

F6 GEOR030106 Linker propensity from medium dataset 

F7 ZIMJ680103 Polarity 

F8 VINM940101 Normalized flexibility parameters (B-values), 

average 

F9 GEOR030108 Linker Propensity from Helical 

F10 GEOR030109 Linker Propensity from Non-Helical 

F11 BAEK050101 Linker Index 

F12 - Protein Secondary Structure 

F13 - Relative solvent accessibility 

 

Table 2.  Data Set showing Positive and Negative Samples 

Data Set Positive Sample(Linker) Negative Sample 

(Domain) 

Data Set 1 6200 31000 

Data Set 2 6200 31000 

Data Set 3 6500 32500 

 

Table 3. Performance measures of SVM-I, SVM-II, SVM-III 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 

SVM Kernel Accuracy(%) Precision Recall 

 
SVM-I 
 

Linear 49.55 0.494 0.548 

Polynomial 48.78 0.491 0.643 

Radial 48.10 0.490 0.934 

 
SVM-II 
 

Linear 45.23 0.161 0.5416 

Polynomial 47.51 0.160 0.518 

Radial 80.13 0.192 0.598 

 
     SVM-III 
 

Linear 47.04 0.1709 0.5652 

Polynomial 45.13 0.1651 0.5652 

Radial 78.46 0.1571 0.669 
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Performance measures of SVM I with varying values of γ 

γ Accuracy (%) Specificity+ Specificity- Sensitivity+ Sensitivity- 

0.01 58.74 0.1835 
0.844 0.4278 0.6192 

0.013 59.97 0.1839 
0.8434 0.4075 0.6382 

0.015 60.74 0.1843 
0.8432 0.3959 0.6497 

0.018 62.05 0.1852 
0.843 0.3757 0.6695 

0.02 63.09 0.1874 
0.8433 0.3642 0.6843 

0.023 64.52 0.1887 
0.843 0.3422 0.706 

0.025 65.67 
0.1914 0.8432 0.3286 0.7222 

0.027 66.45 
0.1902 0.8422 0.311 0.7353 

0.03 67.76 
0.1914 0.8417 0.2895 0.7554 

0.04 71.85 
0.1968 0.8404 0.2237 0.8175 

0.05 74.91 
0.2028 0.8393 0.1725 0.8644 

.0901 81.04 
0.2138 0.8353 0.0514 0.9622 

 

Table 5. Performance measures of 90 CASP 11 targets 

S.No. Target PDB Id Accuracy 

(%) 

Sp+ 

 

Sp- 

 

Se+ 

 

Se- 

 

1 T0759 4928 96.77 - 0.972477 0 1 

2 T0760 4pqx 90.27 1 0.792453 0.120 1 

3 T0761 4pw1 79.93 - 0.810526 0 1 

4 T0762 4qst 94.32 - 0.946429 0 1 

5 T0763 4q0y 85.03 - 0.865031 0 1 

6 T0764 4q34 96.31 - 0.964809 0 1 

7 T0765 4pwu 67.86 - 0.593750 0 1 

8 T0766 4q53 87.72 - 0.892308 0 1 

9 T0767 4qpv 84.11 - 0.849057 0 1 

10 T0768 4oju 90.26 - 0.911765 0 1 

11 T0769 2mq8 92.71 - 0.794643 0 1 

12 T0770 4q69 92.80 0 0.949791 0 0.978448 

13 T0771 4qeo 80.32 - 0.740196 0 1 

14 T0772 4quz 82.73 - 0.837736 0 1 

15 T0773 - 96.72 - 0.766234 0 1 

16 T0774 4qb7 93.11 - 0.891821 0 1 

17 T0775 gp34 100 - 1 - 1 

18 T0776 4qga 90.73 - 0.886719 0 1 

19 T0777 - 96.86 0 0.975275 0 0.994398 
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20 T0780 4qdy 78.60 - 0.737452 0 1 

21 T0781 4qaw 92.08 - 0.923810 0 1 

22 T0782 4qrl 85.71 - 0.874074 0 1 

23 T0783 4cvw 100 - 1 - 1 

24 T0784 4qcy 84.17 - 0.858065 0 1 

25 T0785 4d0v 100 - 1 - 1 

26 T0786 4qvu 87.50 - 0.821970 0 1 

27 T0789 4w4i 96.42 - 0.911864 0 1 

28 T0790 4l4w 92.78 - 0.877133 0 1 

29 T0791 4kxr 100 - 1 - 1 

30 T0792 - 100 - 1 - 1 

31 T0793 - 94.65 - 0.921008 0 1 

32 T0794 4cyf 99.56 - 0.995745 0 1 

33 T0795 - 100 - 1 - 1 

34 T0796 - 99.66 - 0.938511 0 1 

35 T0797 4ojk 100 - 1 - 1 

36 T0798 4ojk 90.11 - 0.828283 0 1 

37 T0799 - 100 - 1 - 1 

S.No. Target PDB Id Accuracy 
(%) 

Sp+ 

 
Sp- 

 
Se+ 

 
Se- 

 

38 T0800 4qrk 88.31 - 0.890688 0 1 

39 T0801 4piw 100 - 1 - 1 

40 T0802 - 100 - 1 - 1 

41 T0803 4oqw 100 - 1 - 1 

42 T0804 - 100 - 1 - 1 

43 T0805 - 99.49 0 1 - 0.995327 

44 T0806 - 100 - 1 - 1 

45 T0807 4wqw 100 - 1 - 1 

46 T0808 4quw 97.51 - 0.976077 0 1 

47 T0810 - 95.91 - 0.960836 0 1 

48 T0811 - 100 - 1 - 1 

49 T0812 - 95.21 - 0.877451 0 1 

50 T0813 4wji 100 - 1 - 1 

51 T0814 4r7f 96.57 - 0.966981 0 1 

52 T0815 4u13 100 - 1 - 1 

53 T0816 - 100 - 1 - 1 

54 T0817 4wed 94.70 - 0.948571 0 1 

55 T0818 4r1k 86 - 0.873494 0 1 

56 T0819 4wkt 100 - 1 - 1 

57 T0820 - 100 - 1 - 1 

58 T0821 4r7s 95.75 - 0.960000 0 1 

59 T0822 - 100 - 1 - 1 
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60 T0823 - 100 - 1 - 1 

61 T0824 - 100 - 1 - 1 

62 T0826 - 99.43 0 0.996317 0 0.998155 

63 T0827 - 97.44 - 0.975430 0 1 

64 T0828 - 58.58 - 0.587097 0 1 

65 T0829 4rgi 100 - 1 - 1 

66 T0830 - 95.71 0 0.968366 0 0.989228 

67 T0831 4qul 100 - 1 - 1 

68 T0832 4rds 86.72 - 0.813230 0 1 

69 T0833 4r03 83.33 - 0.852941 0 1 

70 T0834 4r7q 90.15 - 0.835616 0 1 

71 T0835 - 97.06 - 0.971698 0 1 

72 T0836 - 96.28 0 1 - 0.965686 

73 T0837 - 100 - 1 - 1 

74 T0838 - 86.23 - 0.876623 0 1 

75 T0839 - 100 - 1 - 1 

76 T0840 - 97.70 - 0.977578 0 1 

77 T0841 - 100 - 1 - 1 

78 T0843 4xau 100 - 1 - 1 

 

S.No. 

 

Target 

 

PDB Id 

 

Accuracy 

(%) 

 

Sp+ 

 

 

Sp- 

 

 

Se+ 

 

 

Se- 

 

79 T0845 4rs0 96.76 - 0.962060 0 1 

80 T0847 4urj 100 - 1 - 1 

81 T0848 4r4q 93.20 1 0.934659 0 1 

82 T0849 4w66 100 - 1 - 1 

83 T0851 4w01 99.32 0 1 - 0.993421 

84 T0852 4wqr 90.45 - 0.869565 0 1 

85 T0853 2mqb 100 - 1 - 1 

86 T0854 4m3 100 - 1 - 1 

87 T0855 2mqd 100 - 1 - 1 

88 T0856 4qt6 100 - - - - 

89 T0857 2mqc 100 - - - - 

90 T0858 - 94.35 - - - - 

 Avg  94.5  0.90  0.9 

 

 

 

 

 

 

Table 6. Data Set showing Positive and Negative Samples 
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Data Set Positive Sample(linker) Negative Sample (Domain) 

Data Set 1 6200 12400 

Data Set 2 6200 12400 

Data Set 3 6500 13000 

 

Table 7. Performance measures of SVM-I, SVM-II, SVM-III 

 

Table 8. Performance measures of SVM-III with varying values of γ 

S.No. γ Accuracy (%) Precision Recall 

1 0.01 51.33 0.5132 0.5168 

2 0.09 51.45 0.5316 0.2448 

3 0.2 51.34 0.5673 0.1128 

4 0.23 51.88 0.5797 0.1368 

5 0.245 51.33 0.5413 0.5571 

6 0.248 51.32 0.5307 0.228 

7 0.25 50.60 0.5044 0.6818 

8 0.251 50.62 0.5036 0.3602 

9 0.252 50.23 0.5013 0.9012 

10 0.255 50.25 0.5014 0.9203 

11 0.253 50.22 0.5012 0.9197 

12 0.26 50.12 0.5006 0.9649 

13 0.27 49.99 0.5 0.9832 

14 0.4 50 0.5 1 

15 0.5 50 0.5 1 

16 1.5 50 0.5 1 

 

 

Table 9. Performance measures of 90 CASP 11 targets 

S.No. Target PDB Id Accuracy (%) Precision Recall 

1 T0759 4928 96.77 0.9677 1 

SVM Kernel Accuracy(%) Precision Recall 

 
SVM-I 
 

Linear 49.55 0.494 0.548 

Polynomial 48.78 0.491 0.643 

Radial 48.10 0.490 0.934 

 
SVM-II 
 

Linear 52.04 0.519 0.560 

Polynomial 51.19 0.517 0.571 

Radial 49.35 0.488 0.267 

 
       SVM-III 
 

Linear 54.24 0.541 0.557 

Polynomial 54.56 0.558 0.441 

Radial 78.46 0.157 0.669 
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2 T0760 4pqx 89.82 0.8973 1 
3 T0761 4pw1 79.93 0.7993 1 
4 T0762 4qst 94.32 0.9432 1 
5 T0763 4q0y 85.03 0.8503 1 
6 T0764 4q34 96.31 0.9631 1 
7 T0765 4pwu 67.86 0.6786 1 
8 T0766 4q53 87.72 0.8772 1 
9 T0767 4qpv 84.11 0.8411 1 
10 T0768 4oju 90.26 0.9026 1 
11 T0769 2mq8 92.71 0.9271 1 
12 T0770 4q69 93.22 0.9483 0.9821 
13 T0771 4qeo 80.32 0.8032 1 
14 T0772 4quz 82.73 0.8273 1 
15 T0773 - 96.72 0.9672 1 
16 T0774 4qb7 93.11 0.9311 1 
17 T0775 gp34 100 1 1 
18 T0776 4qga 74.60 0.925 0.794 
19 T0777 - 97.43 0.9743 1 
20 T0780 4qdy 79.01 0.7893 1 
21 T0781 4qaw 92.08 0.9208 1 
22 T0782 4qrl 85.71 0.8571 1 
23 T0783 4cvw 100 1 1 
24 T0784 4qcy 84.17 0.8417 1 
25 T0785 4d0v 100 1 1 
26 T0786 4qvu 87.50 0.875 1 
27 T0789 4w4i 96.42 0.9642 1 
28 T0790 4l4w 92.78 0.9278 1 
29 T0791 4kxr 100 1 1 
30 T0792 - 100 1 1 
31 T0793 - 94.65 0.9465 1 
32 T0794 4cyf 99.56 0.9956 1 
33 T0795 - 100 1 1 
34 T0796 - 99.66 0.9966 1 
35 T0797 4ojk 100 1 1 
36 T0798 4ojk 90.11 0.9011 1 
37 T0799 - 100 1 1 
38 T0800 4qrk 88.31 0.8831 1 
39 T0801 4piw 99.72 1 0.9972 
40 T0802 - 100 1 1 
41 T0803 4oqw 100 1 1 
42 T0804 - 100 1 1 
43 T0805 - 98.48 1 0.9848 
44 T0806 - 100 1 1 
S.No. Target PDB Id Accuracy 

(%) 
Precision 
 

Recall 
 

45 T0807 4wqw 100 1 1 
46 T0808 4quw 97.51 0.9751 1 
47 T0810 - 95.91 0.9591 1 
48 T0811 - 100 1 1 
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49 T0812 - 95.21 0.9521 1 
50 T0813 4wji 99.66 1 0.9966 
51 T0814 4r7f 96.57 0.9657 1 
52 T0815 4u13 100 1 1 
53 T0816 - 100 1 1 
54 T0817 4wed 94.70 0.947 1 
55 T0818 4r1k 86 0.86 1 
56 T0819 4wkt 99.72 1 0.9972 
57 T0820 - 100 1 1 
58 T0821 4r7s 95.75 0.9575 1 
59 T0822 - 100 1 1 
60 T0823 - 100 1 1 
61 T0824 - 100 1 1 
62 T0826 - 99.05 0.9962 0.9943 
63 T0827 - 97.44 0.9744 1 
64 T0828 - 58.58 0.5858 1 
65 T0829 4rgi 100 1 1 
66 T0830 - 92.67 0.9664 0.9575 
67 T0831 4qul 100 1 1 
68 T0832 4rds 86.72 0.8672 1 
69 T0833 4r03 83.33 0.8333 1 
70 T0834 4r7q 90.15 0.9015 1 
71 T0835 - 97.06 0.9706 1 
72 T0836 - 89.36 1 0.8936 
73 T0837 - 100 1 1 
74 T0838 - 86.23 0.8623 1 
75 T0839 - 100 1 1 
76 T0840 - 97.70 0.977 1 
77 T0841 - 100 1 1 
78 T0843 4xau 99.72 1 0.9972 
79 T0845 4rs0 96.76 0.9676 1 
80 T0847 4urj 100 1 1 
81 T0848 4r4q 92.6 0.926 1 
82 T0849 4w66 100 1 1 
83 T0851 4w01 99.09 1 0.9909 
84 T0852 4wqr 90.45 0.9045 1 
85 T0853 2mqb 100 1 1 
86 T0854 4m3 100 1 1 
87 T0855 2mqd 100 1 1 
S.No. Target PDB Id Accuracy 

(%) 
Precision 
 

Recall 
 

      
88 T0856 4qt6 100 1 1 
89 T0857 2mqc 100 1 1 
90 T0858 - 94.35 0.9435 1 
 Average  94.2 0.9468 0.9954 

 

Table 10. Comparison of PDP_SVM with existing state-of-the-arts for Experiment-I 
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S.No. Target Sequenc
e Length 

Linkers 
Observed in 
Domain 
Definition 

Linker Predicted By 

PDP_SV
M 

DROP[1
1] 

DoBo 
[10] 

DomPre
d 

DomSSE
A 

1 T0760 242 1-32 22-25 101-127 47 127 - 

2 T0770 488 1-32 133-138, 
420-422, 
430 

435-456 114,357,
421-
422,433,
435 

222,344 183,195,
366,263,
404,420 

3 T0777 366 1-17, 363-
366 

136-137 160-172 52-
53,100,1
02-
103,300,
301-
302,307-
308,310-
311,314,
316,317 

- 236,291 

4 T0805 214 1 142 75-96 66-
67,69-
74,97,99
, 
111-112, 
152,155-
157, 
159,161-
162, 
167,170 

75 50,58,89 

5 T0826 544 1-10,370-
544 

84 208-232 47-
48,50-
52,54-
57,63,66
-68,70-
65,79,22
7,238,48
3 

228 96,147,1
76,183,1
94,257,2
69,355 

6 T0830 575 1-26,574-
575 

204, 
210-
212, 
244, 352 

529-555 48,51,35
6,363-
364,367
-
368,391,
394,396,
398,401,
510 

88,257,3
12 

156,222,
364,393 
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7 T0836 204 - 101-
102, 
106-110 

63-89 51,75,79
-
80,105,1
11-
112,118,
120,121,
125,134
-
138,141 

- - 

8 T0848 354 1-33 14-15 305-322 51,111,1
42-
145,149,
155-
158,160,
163,169,
173 

146 168,219,
244,247,
257,312 

9 T0851 456 851 274-276 373-390 373-
374,380,
383,408,
411 

207,312 16,140,2
45,325 

 

a) no linker found by the predictor. 

Table 11. Comparison of PDP_SVM with existing state-of-the-arts for Experiment-II 

S. 

No

. 

Target PDB 

Id 

Sequen

ce 

Length 

Linkers 

Observed 

in 

Domain 

Definitio

n 

Linker Predicted By 

PDP_SV

M 

DROP[1

1] 

DoBo[1

0] 

DomPre

d 

DomSS

EA 

1 T0760 pqx 242 1-32 15-16 101-127 47 127 - 

2 T0770 4q69 488 1-32 133-

138, 

349, 

430 

435-456 114,357

,421-

422,433

,435 

222,344 183,195

,366,26

3,404,4

20 

3 T0780 4qdy 259 1-39,231-

259 

14 138-256 NA 136 117,154 

4 T0801 4piw 376 1-2, 376 82 268 - 

288 

NA 264 72,93,1

08,172,

190 

5 T0805 - 214 1 139-141 75-96 66-

67,69-

74,97,9

75 50,58,8

9 
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9, 

111-

112, 

152,155

-157, 

159,161

-162, 

167,170 

6 T0813 4wji 307 303-307 192 147-156 48,57,6

1,66,69-

70,245,

247,251

,255,25

8,259,2

62-263 

172 180,190

,206 

7 T0819 4wkt 373 372-373 232 200-215  158,284 131,241

,248,25

8,271 

8 T0826 - 544 1-10,370-

544 

23-24, 

84 

208-232 47-

48,50-

52,54-

57,63,6

6-

68,70-

65,79,2

27,238,

483 

228 96,147,

176,183

,194,25

7,269,3

55 

9 T0830 - 575 1-26,574-

575 

93, 195-

209, 

213-

214, 

244, 

289, 

292, 

349, 

353 

529-555 48,51,3

56,363-

364,367

-

368,391

,394,39

6,398,4

01,510 

88,257,

312 

16,140,

245,325 

10 T0836 - 204 - 48-55, 

97-99, 

101, 

103-110 

63-89 51,75,7

9-

80,105,

111-

112,118

- - 
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,120,12

1,125,1

34-

138,141 

11 T0843 4xau 369 - 83 271-289 251-

255,265

,275,27

9,282,2

86,297-

298,300

,305,31

2,314,3

16,319,

320 

270 109,122

,135 

12 T0851 4w01 456 851 26-27, 

274-275 

373-390 373-

374,380

,383,40

8,411 

207,312 16,140,

245,325 

a) NA: Result not available in the predictor 

b) no linker found by the predictor. 

 

 
Figure 1. Structure of T0760. The green part is the domain region. The red part is the non-domain 

(linker) region. 
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Figure 2. Structure of T0760 as predicted by DOM_SVM in experiment I. The green part  is the domain 

region. The blue part is the linker region. 

 

 

 
Figure 3. Structure of T0848. The green part and blue-white part are the two domain regions 

distinctly. The red part is the non-domain (linker) region.  
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Figure 4. Structure of T0848 as predicted by DOM_SVM in experiment I. The green part and blue-white 

part are the two domain regions distinctly. The blue part is the linker region.  

 

CONCLUSIONS 

The work presented in this study, DOM_SVM, 

addresses a very important issue of 

Bioinformatics, namely, prediction of Protein 

Domain Boundaries. This information will 

further facilitate the prediction of protein 

function. Machine learning techniques involving 

classifier like Support Vector Machine (SVM) 

has been developed for this purpose. In doing 

so, it has been observed that the choice of 

appropriate feature set and classifier is very 

important for the success of this technique. 

Keeping this in mind, DOM_SVM uses a two 

pronged strategy, i.e..designing a strong feature 

set (relevant physiochemical properties of 

Amino acids from the AAIndex database, 

predicted secondary structure, and predicted 

solvent accessibility) and using Support Vector 

Machine as best classifier for a 2-class classifier 

problem. DOM_SVM uses a SVM as a classifier, 

trained on different folds of training data. 

Curated data derived from CATH database is 

considered here for training the Support Vector 

Machine classifier. The model is then tested on 

90 CASP 11 target proteins, and the results are 

evaluated on the basis of various metrics. 

A number of works have already been done in 

this field, but there is still scope for 

improvement, that DOM_SVM tries to achieve. 

It uses a different strategy that combines a very 

strong feature set, with the genius of the best 

two- class classifier-The Support Vector 

Machine. DOM_SVM has been experimented 

with various ratios of training data. In case of an 

unbalanced dataset, the classifier is likely to 

become biased. Hence, DOM_SVM has been 

trained with balanced dataset as well. We have 

thus achieved a high rate of accuracy, precision 

and recall with DOM_SVM on 90 proteins of 

CASP 11 database. 

In order to test the accuracy and relevance of 

the results of DOM_SVM, its performance on 

CASP 11 targets have been compared with that 

of other existing state-of-the-arts, like 

DROP[11], DOMPred, DoBo[10] etc on the 

same. 

However, DOM_SVM does not take into 

account the ranking of features. Random Forest 

Classifier or any other T-test based strategy can 
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be used to rank these features that may further 

enhance its performance. The same can also be 

done by the use of evolutionary approach along 

with a set of strong feature set. In this work, 

CATH (2.5.1) has been taken as           training 

dataset containing only 354 proteins. The latest 

version of CATH dataset (version 4.1) is 

available that can be used as training dataset as 

future work. 
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